По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
1) Дано: ΔАВС, D - середина АВ, Е - середина ВС, AD = CE.
Доказать: ΔBDC = ΔBEA.
Доказательство:
AD = DB, так как D - середина АВ,
СЕ = ЕВ, так как Е - середина ВС,
AD = CE по условию, значит
AD = DB = СЕ = ЕВ, а следовательно
АВ = ВС.
В треугольниках BDC и BEA:
ВС = АВ,
DB = EB,
∠B - общий, ⇒
ΔBDC = ΔBEA по двум сторонам и углу между ними.
2) Дано: ΔKLM - равносторонний, А - внутренняя точка ΔKLM,
AK = AL = AM.
Доказать: ΔKLA = ΔMLA.
Доказательство:
АК = АМ по условию,
LK = LM как стороны равностороннего треугольника,
AL - общая сторона для треугольников KLA и MLA, ⇒
ΔKLA = ΔMLA по трем сторонам.