Треугольники АВС и СЕD равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
АС=CD;BC=CE; по условию задачи
Углы АСВ и ЕСD равны между собой,как вертикальные
Равенство треугольников доказано,следовательно соответствующие углы и стороны треугольников тоже равны
Задание 2
Треугольники АВС и АСD равны между собой по первому принципу равенства треугольников
АВ=АD;Углы ВАС и САD равны между собой;
АС-общая сторона
Равенство треугольников доказано,и естественно,равны соответствующие стороны и углы
ответ:Задание 1
Треугольники АВС и СЕD равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
АС=CD;BC=CE; по условию задачи
Углы АСВ и ЕСD равны между собой,как вертикальные
Равенство треугольников доказано,следовательно соответствующие углы и стороны треугольников тоже равны
Задание 2
Треугольники АВС и АСD равны между собой по первому принципу равенства треугольников
АВ=АD;Углы ВАС и САD равны между собой;
АС-общая сторона
Равенство треугольников доказано,и естественно,равны соответствующие стороны и углы
Объяснение:
Четырехугольник, у которого противоположные стороны попарно параллельны (лежат на параллельных прямых) - параллелограмм.
По условию АС и ВD, АВ и CD лежат на параллельных прямых. Следовательно, АВСD- параллелограмм.
В параллелограмме противоположные стороны равны. ⇒
АС=ВD и АВ-СD.
Соединив А и D, получим треугольники АСD и ABD.
В них накрестлежащие углы при пересечении параллельных прямых а и b секущей АD равны.
Накрестлежащие углы при параллельных прямых АВ и CD секущей АD - равны.
Сторона AD- общая.
Треугольники АСD и ABD равны по второму признаку равенства треугольников. Их соответственные стороны равны.
⇒АВ=СD.