Составить уравнение эллипса,который симметричен относительно осей координат ,фокусы которого находятся на оси ох ,проходит через точку (-4; √21) и имеет эксцентриситет 3/4.определить координаты фокусов и уравнения директрис.найти
растояния от фокусов до точки м.
сделать рисунок.
,
3. 1. Неверно. В равнобедренном треугольнике могут совпадать высота и медиана только из одной вершины. Из всех вершин они совпадают только в равностороннем треугольнике.
3.2. Верно. Если биссектриса делит противоположную сторону на равные отрезки, то она еще и медиана. Такой треугольник равнобедренный.
3.3. Верно. В равностороннем треугольнике высоты и биссектрисы, проведенные из каждой вершины, совпадают.
4. Биссектрисы треугольника пересекаются в одной точке. Следовательно, FО - биссектриса.
___
5. Если АF=FC, то BF- еще и медиана. Высота и медиана совпадают в равнобедренном треугольнике.⇒ ВС=ВА=7 см.
6. EF = FK, BF – высота⇒
Треугольник КВЕ равнобедренный. Решения нет, по одной только высоте найти основание треугольника нельзя.
7. Основание равно разности между периметром и суммой боковых сторон. 12-(5+5)=2 см.
Отметим точку К - середину ребра CD.
Искомое сечение SOK, так как оно проходит через прямую SO и прямую ОК, параллельную прямой BD (ОК║BD как средняя линия треугольника BCD). А если прямая BD параллельна прямой, лежащей в сечении, то она параллельна секущей плоскости.
Пирамида правильная, значит в основании квадрат. Все ребра по 6 см, значит боковые грани - равные равносторонние треугольники.
Диагональ квадрата равна а√2, где а - сторона квадрата.
BD = 6√2 см
ОК = BD/2 = 3√2 см
SO = SK как высоты равных равносторонних треугольников,
SO = SK = a√3/2 = 6√3/2 = 3√3 см (а - ребро пирамиды)
Psok = SO + SK + OK = 3√3 + 3√3 + 3√2 = 6√3 + 3√2 = 3(2√3 + √2) см