Пусть куб KMNPK1M1N1P1 имеет вершины K(0,0,0) M(0,1,0) P(1,0,0) K1(0,0,1) этого достаточно, остальные вершины для определения куба не важны - они "сами собой" занимают своё место M1(0,1,1) N(1,1,0) P1(1,0,1) N1 (1,1,1) (разумеется, таким образом я определил систему координат XYZ) Все это преамбула, "подготовка площадки". Вот теперь решение. Пусть точкам присвоены ДОПОЛНИТЕЛЬНЫЕ обозначения K1 <=> C; M <=> D; P <=> A; N1 <=> B; тогда ABCD - правильный тетраэдр. У него все грани - равносторонние треугольники. Плоскость ACD - это плоскость, проходящая через точки (1,0,0) (0,1,0) и (0,0,1), её уравнение x + y + z = 1; то есть нормальный вектор (1,1,1). Плоскость, проходящая через точки C(0,0,1) B(1,1,1) и E(1/2,1/2,0) имеет еще более простое уравнение x = y; нормальный вектор (1, -1, 0) угол между плоскостями равен углу между нормальными векторами, то есть надо найти угол между векторами (1,1,1) и (1,-1,0); их скалярное произведение равно 0, значит они перпендикулярны.
Между прочим, это можно было заметить сразу, поскольку диагональное сечение куба - плоскость BCE содержит прямую, перпендикулярную плоскости ACD - это AB, вектор AB совпадает с вектором, нормальным к ACD - это (1,1,1)
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1}. Модуль или длина вектора: |a|=√(x²+y²). cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: Вектор АВ(2-1;5-(-2)) или AB(1;7) |AB|=√(1²+7))=5√2. Вектор ВC(-5-2;4-5) или BC(-7;-1) |BC|=√(7²+(-1)²)=5√2. Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2. Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2. Вектор AD(-6-1);-3-(-2)) или AD(-7;-1) |AD|=√((-7)²+(-1)²))=5√2. Итак, четырехугольник АВСД параллелограмм (так как его противоположные стороны попарно равны. А поскольку все его стороны равны, то это или ромб, или квадрат. Найдем один из углов четырехугольника между сторонами АВ и AD (этого достаточно). cosα=(Xab*Xad1+Yab*Yad)/[√(Xab²+Yab²)*√(Xad²+Yad²)]. Или cosα=(1*(-7)+7*(-1))/[√(1²+7²)*√((-7)²+(-1)²)]=--14/5√2. Следовательно, этот угол тупой.А так как в квадрате все углы прямые, то вывод: четырехугольник АВСD - ромб что и требовалось доказать.
K(0,0,0) M(0,1,0) P(1,0,0) K1(0,0,1) этого достаточно, остальные вершины для определения куба не важны - они "сами собой" занимают своё место M1(0,1,1) N(1,1,0) P1(1,0,1) N1 (1,1,1) (разумеется, таким образом я определил систему координат XYZ)
Все это преамбула, "подготовка площадки". Вот теперь решение.
Пусть точкам присвоены ДОПОЛНИТЕЛЬНЫЕ обозначения
K1 <=> C; M <=> D; P <=> A; N1 <=> B;
тогда ABCD - правильный тетраэдр. У него все грани - равносторонние треугольники.
Плоскость ACD - это плоскость, проходящая через точки (1,0,0) (0,1,0) и (0,0,1), её уравнение x + y + z = 1;
то есть нормальный вектор (1,1,1).
Плоскость, проходящая через точки C(0,0,1) B(1,1,1) и E(1/2,1/2,0)
имеет еще более простое уравнение x = y;
нормальный вектор (1, -1, 0)
угол между плоскостями равен углу между нормальными векторами, то есть надо найти угол между векторами (1,1,1) и (1,-1,0); их скалярное произведение равно 0, значит они перпендикулярны.
Между прочим, это можно было заметить сразу, поскольку диагональное сечение куба - плоскость BCE содержит прямую, перпендикулярную плоскости ACD - это AB, вектор AB совпадает с вектором, нормальным к ACD - это (1,1,1)
Модуль или длина вектора: |a|=√(x²+y²).
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае:
Вектор АВ(2-1;5-(-2)) или AB(1;7) |AB|=√(1²+7))=5√2.
Вектор ВC(-5-2;4-5) или BC(-7;-1) |BC|=√(7²+(-1)²)=5√2.
Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2.
Вектор CD(-6-(-5);-3-4) или CD(-1;-7) |CD|=√((-1)²+(-7)²))=5√2.
Вектор AD(-6-1);-3-(-2)) или AD(-7;-1) |AD|=√((-7)²+(-1)²))=5√2.
Итак, четырехугольник АВСД параллелограмм (так как его противоположные стороны попарно равны. А поскольку все его
стороны равны, то это или ромб, или квадрат.
Найдем один из углов четырехугольника между сторонами АВ и AD (этого достаточно).
cosα=(Xab*Xad1+Yab*Yad)/[√(Xab²+Yab²)*√(Xad²+Yad²)].
Или cosα=(1*(-7)+7*(-1))/[√(1²+7²)*√((-7)²+(-1)²)]=--14/5√2.
Следовательно, этот угол тупой.А так как в квадрате все углы прямые, то вывод: четырехугольник АВСD - ромб что и требовалось доказать.