1)начнем с того, что это равнобедренная трапеция. углы при основаниях равны. то есть угол а=в=(360-120*2)/2=60 градусов; d=c=120 градусов. 2)затем делаем дополнительные построения -высота dh и ck перпендикулярные ab, тогда ah=kb=14-8/2=3 3)теперь рассматриваем отдельно треугольник adh: уголahd=90(dh-высота) угол dah=60 сумма всех углов =180, тогда угол adh=180-90-60=30 4) рассмотрим опять этот треугольник угол adh=30 сторона ah=3, тогда ad=ah*2(катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы) и получается, что ad=cb=6. отсюда - периметр равен сумме всех сторон, то есть 8+14+6+6=34
ответ:
1. аа₁ - биссектриса,
вв₁ - медиана,
сс₁ - высота.
2. ав = св,
∠аве = ∠све,
ве - общая сторона.
δаве = δсве по 1 признаку (по двум сторонам и углу между ними).
3. ∠вас = 180° - ∠1 по свойству смежных углов.
∠вас = 180° - 110° = 70°.
в равнобедренном треугольнике углы при основании равны, значит
∠вса = вас = 70°
∠bdc = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.
4. ом = ок по условию,
∠dmo = ∠bko по условию,
∠dom = ∠bok как вертикальные, значит
δdmo = δbko по стороне и двум прилежащим к ней углам.
в равных треугольниках напротив равных сторон лежат равные углы, значит ∠mdo = ∠kbo, а так же od = ob.
треугольник dob равнобедренный, значит углы при основании равны:
∠odb = ∠obd.
∠mdb = ∠mdo + ∠odb
∠kbd = ∠kbo + ∠obd, а так как ∠mdo = ∠kbo и ∠odb = ∠obd, то
∠mdb = ∠kbd, т.е. ∠d = ∠b
объяснение:
это ответы на этот сор
2)затем делаем дополнительные построения -высота dh и ck перпендикулярные ab, тогда ah=kb=14-8/2=3
3)теперь рассматриваем отдельно треугольник adh:
уголahd=90(dh-высота)
угол dah=60
сумма всех углов =180, тогда угол adh=180-90-60=30
4) рассмотрим опять этот треугольник угол adh=30
сторона ah=3, тогда ad=ah*2(катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы)
и получается, что ad=cb=6.
отсюда - периметр равен сумме всех сторон, то есть 8+14+6+6=34