Сор 1)Полностью опишите преобразование, с которого была получена фигура К (А(4;4),В(9;8),С(9;4))
из фигуры М (Е(1;1), Х(4;3),Т(4;1)). (3)
2. Наблюдатель, который находится в точке Ч, видит конец жерди Ж и верхнюю точку башни Б, причем точки Ч, Ж и Б расположены на одной прямой. Определите высоту башни БА, если ЧК = 5 м, ЖК= 6 м, КА = 70 м. (4)
3. Точка Т делит сторону ИМ квадрата ЗИМА в отношении 4:3, считая от точки И. Отрезки ЗМ и ТА пересекаются в точке Е. Площадь треугольника ЗЕА равна 98 см2. Найдите площадь треугольника ТЕМ. (5)
4. постройте фигуру Р по точкам А(-1;2), В(-4;2) С(-4;4).
a) Отразите фигуру Р относительно оси Ох и обозначьте D.
b) Отразите фигуру Р относительно начала координат и обозначьте Е. (2)
СР
1.Пусть одна сторона равна х, тогда другая 6х. У параллелограмма противолежащие стороны равны. Сумма сторон равна 84. Тогда составим уравнение
х+х+6х+6х=84
14х=84
х=84:14
х=6
Тогда 6х=6×6=36
Проверка: 6+6+36+36=84
ответ: 6; 6; 36; 36
2.В прямоугольнике противоположные стороны равны. Значит ВС=АD=18см
BD и АС являются диагоналями прямоугольника ABCD.
Диагонали в прямоугольнике равны, т.е BD=АС=22см
О-точка пересечения диагоналей, которая делит их пополам. Значит ОD=ОА=ОВ=ОС=1/2 BD=11см
Рboc=ОB+ОC+ВC
Рboc=11+11+18=40см
3.диагонали ромба являются биссектрисами его углов (то есть делят их пополам);
сумма соседних углов ромба равна 180°;
противоположные углы ромба равны
4.Диагональ АС делит параллелограмм на 2 подобных треугольника. Углы NAB=PCD, угол ABN=CDP и следовательно углы BNA= СPD, отсюда следует что прямоугольники ABN и CDP также подобны. Следовательно прямые BN и PD равны между собой. Что и требовалось доказать
5.Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см