Опишем окружность около треугольника АВС. Диаметр этой окружности лежит вне этого треугольника, так как угол <B - тупой (дано). <MCL=90°, как угол между биссектрисами двух смежных углов (свойство). Значит <CLM=45° (так как CL=CM - дано). Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения: 2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°. Проведем через точку А диаметр АК описанной окружности. Тогда <АСК=90°, как угол, опирающийся на диаметр. <AКC=180°-<AВC, так как опираются на одну хорду. <KAC=180°-<ACK-<AKC или <KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°. То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны. Отсюда КС=ВС=5, как хорды, стягивающие равные дуги. Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13. Это диаметр. Значит радиус описанной окружности равен 6,5. ответ: R=6,5.
1)Теорема о неравенстве треугольника: Каждая сторона треугольника меньше суммы двух других сторон. Следствие: Для любых трех точек А, В и С, не лежащих на одной прямой справедливы неравенства: АВ<АС+ВС, АС<АВ+ВС, ВС<АС+АВ. Теорема о соотношении между сторонами и углами треугольника: В треугольнике:1) Напротив большего угла лежит большая сторона и обратно 2) напротив большей стороны лежит больший угол. Следствия: 1)В прямоугольном треугольнике гипотенуза всегда больше катета 2)Если в треугольнике два угла равны, то он равнобедренный(признак равнобедренного треугольника).
<MCL=90°, как угол между биссектрисами двух смежных углов (свойство).
Значит <CLM=45° (так как CL=CM - дано).
Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения:
2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°.
Проведем через точку А диаметр АК описанной окружности.
Тогда <АСК=90°, как угол, опирающийся на диаметр.
<AКC=180°-<AВC, так как опираются на одну хорду.
<KAC=180°-<ACK-<AKC или
<KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°.
То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны.
Отсюда КС=ВС=5, как хорды, стягивающие равные дуги.
Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13.
Это диаметр. Значит радиус описанной окружности равен 6,5.
ответ: R=6,5.
Каждая сторона треугольника меньше суммы двух других сторон.
Следствие:
Для любых трех точек А, В и С, не лежащих на одной прямой справедливы неравенства: АВ<АС+ВС, АС<АВ+ВС, ВС<АС+АВ.
Теорема о соотношении между сторонами и углами треугольника:
В треугольнике:1) Напротив большего угла лежит большая сторона и обратно 2) напротив большей стороны лежит больший угол.
Следствия:
1)В прямоугольном треугольнике гипотенуза всегда больше катета
2)Если в треугольнике два угла равны, то он равнобедренный(признак равнобедренного треугольника).