Стороны равнобедренного треугольника суть: АВ = BC=50 см и AС= 60 см. Проведены высоты АЕ и CD, и точки D и Е соединены. Определить стороны треугольника DBE.
Решение: Вычислим площадь треугольника по формуле Герона.
S=√p (p−a) (p−b) (p−c)
(Нет нужды приводить здесь вычисления, они не влияют на ход и решения) S Δ АВС=1200 см² Найдем длину высоты АЕ к боковой стороне АЕ =2·1200:50=48 По теореме Пифагора найдем длину боковых сторон меньшего треугольника. ВЕ²=DB²=ВС²-АЕ²=196 ВЕ=14 см Треугольники BDE и АВС подобны.
Угол В - общий, углы при основании равны как углы при параллельных прямых и секущей. Найдем коэффициент k подобия треугольников BDE и АВС k=14:50=0,28 DE=AC·0,28=16,8 см ответ: Стороны равны 14 см,14 см, 16,8 см
Углы B и C в рассматриваемом равнобедренном треугольнике равны (как углы между основанием и равными рёбрами). Их градусную меру можно определить через известное значение косинуса
Площадь треугольника найдём как сумму двух одинаковых площадей прямоугольных треугольников. Для этого проведём из вершины A высоту на основание BC. Эта высота AF для равнобедренного треугольника будет также биссектрисой угла A и медианой, делящей основание BC пополам.
Сумма углов треугольника ABC равна 180°. Значит, угол A будет равен 180° - 30° - 30° = 120°. Половина угла равна 60°.
Итак, имеем два равных треугольника ABF и ACF с углами B=C=30° и гипотенузами AB=AC=6. Высоту AF найдём как произведение гипотенузы AB на косинус угла BAF = 0,5 углов A = 60°: AF = 6 · 0,5 = 3. Половину основания найдём из теоремы Пифагора:
Проверим, зная косинус угла B:
Площадь прямоугольного треугольника равна половине произведения его катетов. Полная площадь равнобедренного треугольника равна сумме площадей равных треугольников ABF и ACF. Получим:
Сделаем рисунок.
Стороны равнобедренного треугольника суть: АВ = BC=50 см и AС= 60 см. Проведены высоты АЕ и CD, и точки D и Е соединены. Определить стороны треугольника DBE.
Решение:
Вычислим площадь треугольника по формуле Герона.
S=√p (p−a) (p−b) (p−c)
(Нет нужды приводить здесь вычисления, они не влияют на ход и решения)
S Δ АВС=1200 см²
Найдем длину высоты АЕ к боковой стороне
АЕ =2·1200:50=48
По теореме Пифагора найдем длину боковых сторон меньшего треугольника.
ВЕ²=DB²=ВС²-АЕ²=196
ВЕ=14 см
Треугольники BDE и АВС подобны.
Угол В - общий, углы при основании равны как углы при параллельных прямых и секущей.
Найдем коэффициент k подобия треугольников BDE и АВС
k=14:50=0,28
DE=AC·0,28=16,8 см
ответ:
Стороны равны 14 см,14 см, 16,8 см
Углы B и C в рассматриваемом равнобедренном треугольнике равны (как углы между основанием и равными рёбрами). Их градусную меру можно определить через известное значение косинуса
Площадь треугольника найдём как сумму двух одинаковых площадей прямоугольных треугольников. Для этого проведём из вершины A высоту на основание BC. Эта высота AF для равнобедренного треугольника будет также биссектрисой угла A и медианой, делящей основание BC пополам.
Сумма углов треугольника ABC равна 180°. Значит, угол A будет равен 180° - 30° - 30° = 120°. Половина угла равна 60°.
Итак, имеем два равных треугольника ABF и ACF с углами B=C=30° и гипотенузами AB=AC=6. Высоту AF найдём как произведение гипотенузы AB на косинус угла BAF = 0,5 углов A = 60°: AF = 6 · 0,5 = 3. Половину основания найдём из теоремы Пифагора:
Проверим, зная косинус угла B:
Площадь прямоугольного треугольника равна половине произведения его катетов. Полная площадь равнобедренного треугольника равна сумме площадей равных треугольников ABF и ACF. Получим: