Построим окружность с центром в точке О и радиусом R.
Проведём две равные хорды: AB и CD.
Соединим центр окружности с крайними точками хорд AB и CD.
Рассмотрим треугольники AOB и COD. По условию AB и CD равны. Так как точки A, B, C и D лежат на окружности, OA, OB, OC и OD - радиусы (они проведены от центра окружности до точки, лежащей на окружности) и, соответственно, равны.
Так как AB = CD, OA = OD, OB = OC, то треугольники AOB и COD равны по третьему признаку равенства треугольников (т.е. по трём сторонам). Значит, их соответствующие углы тоже равны. Следовательно, угол AOB равен углу COD.
Обозначим хорду АВ, вершины квадрата, лежащие на окружности, СD, соединим эти точки последовательно. DC||АВ, АВСD- трапеция. Вписать в окружность можно только равнобедренную трапецию. Опустим из С высоту СН и проведем диагональ АС. Высота равнобедренной трапеции, опущенная из вершины тупого угла на большее основание. делит его на два отрезка, из которых меньший равен полуразности, больший – полусумме оснований. ВН=2, АН=4 Треугольник АСВ вписан в тот же сегмент, что и квадрат, его высота СН – сторона квадрата и равна 2 см. Радиус описанной около треугольника окружности находят по формуле R=a•b•c:4S, т.е. он равен произведению сторон треугольника, деленному на его учетверенную площадь По т.Пифагора АС=√(AH²+CH²)=√(16+4)=2√5 По т.Пифагора ВС=√(CH²+BH²)=√8=2√2 S (АВС)=СН•AB:2=2•6:2=6 (см²) a•b•c=6•2√5•2√2=24√10 4S=24 R=24√10:24=√10 (см) Или, используя найденные выше значения АС и ВС:
Построим окружность с центром в точке О и радиусом R.
Проведём две равные хорды: AB и CD.
Соединим центр окружности с крайними точками хорд AB и CD.
Рассмотрим треугольники AOB и COD. По условию AB и CD равны. Так как точки A, B, C и D лежат на окружности, OA, OB, OC и OD - радиусы (они проведены от центра окружности до точки, лежащей на окружности) и, соответственно, равны.
Так как AB = CD, OA = OD, OB = OC, то треугольники AOB и COD равны по третьему признаку равенства треугольников (т.е. по трём сторонам). Значит, их соответствующие углы тоже равны. Следовательно, угол AOB равен углу COD.
Что и требовалось доказать.
Высота равнобедренной трапеции, опущенная из вершины тупого угла на большее основание. делит его на два отрезка, из которых меньший равен полуразности, больший – полусумме оснований.
ВН=2, АН=4
Треугольник АСВ вписан в тот же сегмент, что и квадрат, его высота СН – сторона квадрата и равна 2 см.
Радиус описанной около треугольника окружности находят по формуле R=a•b•c:4S, т.е. он равен произведению сторон треугольника, деленному на его учетверенную площадь
По т.Пифагора АС=√(AH²+CH²)=√(16+4)=2√5
По т.Пифагора ВС=√(CH²+BH²)=√8=2√2
S (АВС)=СН•AB:2=2•6:2=6 (см²)
a•b•c=6•2√5•2√2=24√10
4S=24
R=24√10:24=√10 (см)
Или,
используя найденные выше значения АС и ВС:
По т.синусов
см