Складіть формулу паралельного перенесення,внаслідок якого центр кола (Х+8)2+(У-6)2=9 переходить у точку перетину прямої У=2Х+3 з віссю ординат В ЗА ВІДПОВІДЬ НЕ ПО ТЕМІ БЛОК
Очень смешная задачка, меня порадовала. Пусть точка пересечения упомянутых в условии отрезков - это точка M. Предположим, что я построил плоскость ACM. Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD. Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB. Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD. Что означает, в частности, что AD/AB = CD/CB; AD = AB*CD/CB = 8*7/5 = 11,2
Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)
Біріншісін пайдаланып сөйлемдер құрап жаз
шартты және егер ол болмаса.
Егер сіз ерте келсеңіз (сіз / келсеңіз),
маған орын үнемдейсің бе (сен / құтқарасың)?
1
(веб-сайт / ашық емес)
(сізде бар)
пароль
2 Өтінемін
(сен маған қоңырау шал)
(сіз / таба аласыз) менің әмияным?
3
(менің ата-анам / бермейді)
маған кез-келген қалта ақшасы
(1 / өту) менің емтихандарым.
4
(жаңбыр / жаңбыр),
(біз ойнамаймыз) саябақта футбол.
5
(сіз / тәжірибе) көбірек,
(сіз / алмайсыз) ішіне
команда.
Анель 6
(1 / қоңырау шалмаған) сіз
(біз / жетеміз) үйге
кеш. Мен сені оятуды қаламаймын.
7
(көбірек адам / дауыс)
(ол / жоғалтады)
бұл жолы,
сайлау
8
Челси
char
(не / не)
(олар ұпай жинамайды)
Иә, жеткілікті мақсаттар
Пусть точка пересечения упомянутых в условии отрезков - это точка M.
Предположим, что я построил плоскость ACM.
Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD.
Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB.
Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD.
Что означает, в частности, что AD/AB = CD/CB;
AD = AB*CD/CB = 8*7/5 = 11,2
Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)