Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
<ADB=<ACB, т.к. опираются на одну хорду AB и равны 46° по условию. <BCX=23°по условию же, следовательно <ACX=23°. Следовательно CX - биссектриса. AX - биссектриса по условию, следовательно точка Х является точкой пересечения биссектрис. <ABC = 72°, т.к. противоположные углы вписанного четырехугольника в сумме равны 180°, а <BDC = 62° по условию, отсюда <ADC=<ADB+<BDC=46°+62°=108°. Следовательно <ABC=180°-<ADC(108°)=72°. А угол <CBX является половиной <ABC (из свойства биссектрисы и т.к. BX является таковой. Отсюда <CBX=36°.
Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
<ADB=<ACB, т.к. опираются на одну хорду AB и равны 46° по условию. <BCX=23°по условию же, следовательно <ACX=23°. Следовательно CX - биссектриса. AX - биссектриса по условию, следовательно точка Х является точкой пересечения биссектрис. <ABC = 72°, т.к. противоположные углы вписанного четырехугольника в сумме равны 180°, а <BDC = 62° по условию, отсюда <ADC=<ADB+<BDC=46°+62°=108°. Следовательно <ABC=180°-<ADC(108°)=72°. А угол <CBX является половиной <ABC (из свойства биссектрисы и т.к. BX является таковой. Отсюда <CBX=36°.
ответ: 36°