Проекции катетов на гипотенузу - это отрезки, на которые делит гипотенузу высота, опущенная на нее из прямого угла. Известно, что квадрат этой высоты равен произведению величин отрезков гипотенузы, то есть h = √(1*3) = √3. Тогда в прямоугольных треугольниках, на которые делится исходный прямоугольный треугольник высотой из прямого угла на гипотенузу, имеем: тангенсы острых углов исходного треугольника равны отношению противолежащего катета к прилежащему, то есть √3/1 и √3/3. Значит эти углы соответственно равны 60° и 30°.
1). Биссектриса СК делит угол С на два равных: АСК и КСВ. Зная угол НСК между высотой и биссектрисой, находим угол АСН: <ACH = <ACK - <HCK = 45 - 15 = 30°. В прямоугольном треугольнике АНС находим оставшийся неизвестный угол А: <A = 180 - ACH - AHC = 180 - 30 - 90 = 60°. Зная углы А и С, находим неизвестный угол В: <B = 180 - <C - <A = 180 - 90 - 60 = 30°. Зная, что катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, находим АС: АС = 1/2 АВ = 1/2*14 = 7 см.
2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С: <A = <C = (180 - 120) : 2 = 30° После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы: АН = АС : 2 = 12 : 2 = 6 см
<ACH = <ACK - <HCK = 45 - 15 = 30°.
В прямоугольном треугольнике АНС находим оставшийся неизвестный угол А:
<A = 180 - ACH - AHC = 180 - 30 - 90 = 60°.
Зная углы А и С, находим неизвестный угол В:
<B = 180 - <C - <A = 180 - 90 - 60 = 30°.
Зная, что катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, находим АС:
АС = 1/2 АВ = 1/2*14 = 7 см.
2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С:
<A = <C = (180 - 120) : 2 = 30°
После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы:
АН = АС : 2 = 12 : 2 = 6 см