1. Прямая а может пересекать обе плоскости, если не лежит ни в одной из них (рис. 1) Прямая а может лежать в одной из плоскостей (например, на рис. 2 в плоскости β), тогда другую плоскость она пересекает. Прямая b может не лежать ни в одной из плоскостей, тогда она параллельна каждой. (рис. 3) Прямая b может лежать в одной плоскости (например, на рис. 4 в β), тогда она параллельна другой плоскости. Но пересекать плоскости прямая b не может. Взаимное расположение прямых а и b однозначно определить нельзя. Они могут быть скрещивающимися или пересекаться. Но не могут быть параллельны. 2. Любые три точки, не лежащие на одной прямой, задают единственную плоскость. Пусть точки А, В и С лежат в одной плоскости. АВ⊂α, DC∩α = C, C∉AB ⇒ АВ и CD - скрещивающиеся. К - середина AD, Р - середина СВ. КР = 3 см. Проведем КТ║АВ и ТР║CD. Тогда угол между прямыми КТ и ТР будет равен углу между прямыми АВ и CD. КТ - средняя линия ΔABD ⇒ КТ = АВ/2 = 3 см ТР - средняя линия ΔСBD ⇒ ТР = CD/2 = 3 см ΔКТР равносторонний, значит ∠КТР = 60°, значит и угол между прямыми АВ и CD равен 60°
1. В любой прямой призме проекция диагонали призмы на ее основание - диагональ основания. Следовательно, сечение, проходящее через диагональ призмы и её проекцию на основание - это прямоугольник. 2. Диагональное сечение призмы - прямоугольник ВВ1D1D. АА1=AD=2√3. Значит высота призмы равна 2√3. Диагональ призмы найдем по Пифагору: BD=√(AD²+AB²). АВ=DC (противоположные стороны основания). BD=√(12+25) = BD=√37. Площадь сечения равна S=BD*BB1 =√37*2√3 =2√111. 3. Проведем через сторону ВС сечение ВСН, перпендикулярное ребру АА1.Тогда ВН и СН - высоты боковых граней АА1В1В и АА1С1С соответственно и зная площади этих граней, найдем эти высоты. ВН=Saa1b1b/AA1 = 80/10=8см. СН=Scaa1c1/AA1 = 40/10=4см. По теореме косинусов найдем сторону ВС: ВС=√64+16-2*32*(-1/2) = √112 = 4√7. Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра. Периметр сечения у нас равен Рbch=4+8+4√7=(12+4√7)см. Sбок=(12+4√7)*10= 40(3+√7)см².
Прямая а может лежать в одной из плоскостей (например, на рис. 2 в плоскости β), тогда другую плоскость она пересекает.
Прямая b может не лежать ни в одной из плоскостей, тогда она параллельна каждой. (рис. 3)
Прямая b может лежать в одной плоскости (например, на рис. 4 в β), тогда она параллельна другой плоскости.
Но пересекать плоскости прямая b не может.
Взаимное расположение прямых а и b однозначно определить нельзя. Они могут быть скрещивающимися или пересекаться. Но не могут быть параллельны.
2. Любые три точки, не лежащие на одной прямой, задают единственную плоскость.
Пусть точки А, В и С лежат в одной плоскости.
АВ⊂α, DC∩α = C, C∉AB ⇒ АВ и CD - скрещивающиеся.
К - середина AD, Р - середина СВ. КР = 3 см.
Проведем КТ║АВ и ТР║CD. Тогда угол между прямыми КТ и ТР будет равен углу между прямыми АВ и CD.
КТ - средняя линия ΔABD ⇒ КТ = АВ/2 = 3 см
ТР - средняя линия ΔСBD ⇒ ТР = CD/2 = 3 см
ΔКТР равносторонний, значит ∠КТР = 60°, значит и угол между прямыми АВ и CD равен 60°
2. Диагональное сечение призмы - прямоугольник ВВ1D1D.
АА1=AD=2√3. Значит высота призмы равна 2√3.
Диагональ призмы найдем по Пифагору: BD=√(AD²+AB²).
АВ=DC (противоположные стороны основания).
BD=√(12+25) = BD=√37.
Площадь сечения равна S=BD*BB1 =√37*2√3 =2√111.
3. Проведем через сторону ВС сечение ВСН, перпендикулярное ребру АА1.Тогда ВН и СН - высоты боковых граней АА1В1В и АА1С1С соответственно и зная площади этих граней, найдем эти высоты.
ВН=Saa1b1b/AA1 = 80/10=8см.
СН=Scaa1c1/AA1 = 40/10=4см.
По теореме косинусов найдем сторону ВС:
ВС=√64+16-2*32*(-1/2) = √112 = 4√7.
Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра.
Периметр сечения у нас равен Рbch=4+8+4√7=(12+4√7)см.
Sбок=(12+4√7)*10= 40(3+√7)см².