BK биссектриса, тогда ABK=KBC или ABD+DBK=CBM+KBM откуда ABD=CBM=y и DBK=x по теореме Штейнера получается
AD*AM/(CM*CD) = (AB/BC)^2 но так как AM=CM (медиана) AD/CD = (AB/BC)^2 (1) с одной стороны AD=AB*siny и CD=BC*sin(2x+y) из прямоугольных треугольников ABD и CBD соответственно.
с другой AB/BC = cos(2x+y)/cosy из треугольника ABC Подставляя в (1) откуда siny/sin(2x+y) = cos(2x+y)/cosy откуда sin2x*cos(2x+2y)=0, x<180
откуда x=45-y
Значит ABC=2x+2y = 2*(x+45-x) = 90 гр
второй
Опишем около треугольника ABC окружность, пусть X,H,Y точки пересечения BM,BK,BD с описанной окружностью.
Тогда из условия следует AX=CY и AH=CH (опираются на равные углы) так же получаем что H середина дуги XY так как BK биссектриса, HM высота и биссектриса равнобедренного треугольника AHC и XY || AC (так как AXYC) равнобедренная трапеция , значит BYX=BDA=90 гр, если F точка пересечения XY и MH тогда из подобия треугольников XHM и XYB учитывая что XH=HY откуда XM/BX=1/2 то есть BM=MX а так как MX=MY (треугольники AMX и CMY равны) получаем BM=MX=MY треугольник BMY равнобедренный , откуда BD=YD откуда M центра описанной окружности, значит AC диаметр откуда ABC=90 гр.
1) Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора АВ
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 9-5; Y = 3-(-1); Z = -6-4
АВ(4;4;-10), АС(2;11;-18), АД(0;2;-7).
2) Угол а между векторами АВ и АС равен.
Модули: АВ =√(16 + 16 + 100) = √132 = 2√33.
АС = √(4 + 121 + 324) = √449
cos a = (4*2 + 4*11 + (-10)*(-18))/(√132*√449) = (8 + 44 + 180)/(59268) = 232/243,4502 = 0,952967.
а = arc cos 0,952967 = 0,307917 радиан = 17,642339 градуса.
3) Проекция вектора АД на вектор АВ.
Решение: Пр ba = (a · b)/|b|.
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bz = 0 · 4 + 2 · 4 + (-7) · (-10) = 0 + 8 + 70 = 78
Модуль вектора b = АВ определён и равен √132 = 2√33.
Пр ba = 78/(2√33) = 13√33 / 11 ≈ 6.78903.
4) Площадь грани АВС равна половине модуля векторного произведения векторов АВ и АС.
Векторное произведение:
i j k
4 4 -10
2 11 -18
= i(4(-18)-11(-10)) - j(4(-18)-2(-10)) + k(4*11-2*4) = 38i + 52j + 36k.
S = (1/2)√√(38² + 52² + 36²) = (1/2)√(1444 + 2704 + 1296) = √5444 ≈ 36,89173.
5) Объем пирамиды АВСД равен (1/6) смешанного произведения векторов (АВ х АС) х АД.
(АВ х АС) = (38; 52; 36), АД(0;2;-7) - определено выше.
(АВ х АС) х АД = |38*0 + 52*2 + 36*(-7)| = 148
S = (1/6)*148 = 24,6667.
1)
BK биссектриса, тогда ABK=KBC или ABD+DBK=CBM+KBM откуда ABD=CBM=y и DBK=x по теореме Штейнера получается
AD*AM/(CM*CD) = (AB/BC)^2 но так как AM=CM (медиана) AD/CD = (AB/BC)^2 (1) с одной стороны AD=AB*siny и CD=BC*sin(2x+y) из прямоугольных треугольников ABD и CBD соответственно.
с другой AB/BC = cos(2x+y)/cosy из треугольника ABC Подставляя в (1) откуда siny/sin(2x+y) = cos(2x+y)/cosy откуда sin2x*cos(2x+2y)=0, x<180
откуда x=45-y
Значит ABC=2x+2y = 2*(x+45-x) = 90 гр
второй
Опишем около треугольника ABC окружность, пусть X,H,Y точки пересечения BM,BK,BD с описанной окружностью.
Тогда из условия следует AX=CY и AH=CH (опираются на равные углы) так же получаем что H середина дуги XY так как BK биссектриса, HM высота и биссектриса равнобедренного треугольника AHC и XY || AC (так как AXYC) равнобедренная трапеция , значит BYX=BDA=90 гр, если F точка пересечения XY и MH тогда из подобия треугольников XHM и XYB учитывая что XH=HY откуда XM/BX=1/2 то есть BM=MX а так как MX=MY (треугольники AMX и CMY равны) получаем BM=MX=MY треугольник BMY равнобедренный , откуда BD=YD откуда M центра описанной окружности, значит AC диаметр откуда ABC=90 гр.