Пусть первая диагональ ромба d₁, а вторая диагональ ромба d₂.
Тогда d₁/d₂ = 3/4.
Тогда d₁ = 3*t, а d₂ = 4*t.
Найдем формулу площади ромба, разобьем ромб на два треугольника (по первой диагонали), зная что диагонали ромба перпендикулярны и точкой пересечения делятся пополам,
тогда S = S₁+S₂ = (1/2)*d₁*(d₂/2) + (1/2)*d₁*(d₂/2) = 2*(1/2)*d₁*(d₂/2) =
Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
Пусть первая диагональ ромба d₁, а вторая диагональ ромба d₂.
Тогда d₁/d₂ = 3/4.
Тогда d₁ = 3*t, а d₂ = 4*t.
Найдем формулу площади ромба, разобьем ромб на два треугольника (по первой диагонали), зная что диагонали ромба перпендикулярны и точкой пересечения делятся пополам,
тогда S = S₁+S₂ = (1/2)*d₁*(d₂/2) + (1/2)*d₁*(d₂/2) = 2*(1/2)*d₁*(d₂/2) =
= d₁*d₂/2.
S = d₁*d₂/2.
d₁ = 3t,
d₂ = 4t,
S = (3t)*(4t)/2 = 6*t² = 54 см², отсюда найдем t
t² = 54/6 см² = 9 см²,
t = √( 9см²) = 3 см.
Тогда d₁ = 3t = 3*3см = 9см,
d₂ = 4t = 4*3см = 12 см.
ответ. 9см и 12см.
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см