АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
АВ - хорда=6, ОО1-высота, проводимрадиусы АО=ВО, треугольник АВО равнобедренный, уголАОВ=120, уголА=уголВ=(180-120)/2=30, проводим высоту ОН на АВ , треугольник АОВ прямоугольный, АН=1/2АВ=6/2=3, АО=АН/cos30=3/(корень3/2)=2*корень3 - радиус, ОН=1/2АО=2*корень3/2=корень3, проводим АО1 и ВО1, уголАО1В=60, треугольник АО1В равнобедренный, АО1=ВО1, уголО1АВ=уголО1ВА=(180-60)/2=60, все углы=60, треугольник АО1В равносторонний, АВ=ВО1=АО1=6, проводим высоту О1Н=медиана = АВ*корень3/2=6*корень3/2=3*корень3, треугольник НО1О прямоугольный, ОО1=корень(О1Н в квадрате-ОН в квадрате)=корень(27-3)=2*корень6 - высота цилиндра, площадь боковой=2*пи*радиус*высота=2*пи*2*корень3*2*корень6=8*пи*корень18=24пи*корень2 вот что у меня вышло
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
вот что у меня вышло