Сечение цилиндра, параллельного его оси, отсекает от окружности основания дугу в 120. радиус основания цилиндра равен 6 см, а угол между диагональю сечения и плоскостью основаниям равен 60. найдите образущие цилиндра угол между диагональю сечения и осью цилиндра
Из центра О верхнего основания цилиндра проведем перпендикуляр ОН к хорде АВ. ОН по свойству перпендикуляра из центра к хорде делит АВ пополам.
Треугольник АНО прямоугольный с острыми углами АОН=120º:2=60º и ОАН=90º-60º=30º.
АН=АО*sin 60°=3√3
AB=2 AH=6√3
Образующую АD цилиндра найдем из прямоугольного треугольника АDС, где гипотенуза АС- диагональ сечения, катет АD - образующая цилиндра, катет DС - хорда=основание сечения.
СD=АВ
АD=СD:ctg 60=6√3*√3=18
---------
Диагональ сечения и ось цилиндра не параллельны и не пересекаются.
АС и ОО1 - скрещивающиеся прямые.
Угол между скрещивающимися прямыми - это угол между параллельными им прямыми, лежащими в одной плоскости.
Проведем из Н прямую НМ параллельно ОО1.
АС и НМ пересекаются в точке М1.
Треугольник МСМ1= прямоугольный, угол МСМ1=60º, угол СМ1М - 30º
Угол СМ1М - угол между диагональю сечения и осью цилиндра.