Ага, Пифагорова тройка (20, 21, 29). Проверьте сами - сумма квадратов первых 2 равна квадрату третьего.
Итак, в основании пирамиды прямоугольный треугольник с площадью
Sosn =20*21/2 = 210,
и грани пирамиды имеют одинаковый наклон.
Смотрите, чтобы много не считать. Вершина пирамиды проектируется в центр ВПИСАННОЙ окружности. Потому что при равном наклоне граней все апофемы равны (они равны h = H/sin(Ф), Н - высота пирамиды, Ф - двугранный угол между гранью и основанием). Вершина пирамиды равноудалена от сторон основания, значит, И ЕЁ проекция на основание будет равноудалена от сторон основания. То есть - это центр вписанной окружности.
Проекцией апофемы является радиус вписанной окружности r.
Причем апофема (любая) h = r/cos(Ф); Боковая поверхность при одинаковых апофемах вычисляется так
Sb = (1/2)*Р*h;
где Р - периметр основания (это просто сумма площадей всех треугольников-боковых граней),
Sb = (1/2)*P*r/cos(Ф) = Sosn/cos(Ф); Эта формула крайне полезная, но я не уверен, что программе она есть, поэтому просто её вывел по ходу решения.
Итак,
H = r*tg(Ф), в нашем случае H = r; r = (a + b - c)/2 = 6; (могу объяснить, как эта формула получается, если надо, это в прямоугольном треугольнике работает. Но можно и так сосчитать, r = 2*S/P = 420/(20+21+29) = 6;)
-8x – 8 + 3y + (3/2) = 0, умножим на (-2) и получаем уравнение:
16х – 6у + 13 = 0.
Второй перпендикуляр определяется просто, так как сторона ВС, имеющая точки с одинаковыми абсциссами, - это вертикальный отрезок прямой х = 3 между ординатами у = -2 и у = 4.
Середина её равна у = (-2+4)/2 = 1.
Значит, серединный перпендикуляр к стороне ВС – это горизонтальная прямая у = 1.
Находим их точку пересечения, подставив в уравнение первой прямой значение у = 1:
16х – 6*1 + 13 = 0, отсюда х = -7/16.
Получены координаты центра описанной окружности: О((-7/16); 1).
Далее надо найти радиус окружности.
Он равен расстоянию от центра окружности до любой вершины.
Находим R = OA = √((-5-(-7/16))² + (1-1)²) = 73/16 = 4,5625.
Ага, Пифагорова тройка (20, 21, 29). Проверьте сами - сумма квадратов первых 2 равна квадрату третьего.
Итак, в основании пирамиды прямоугольный треугольник с площадью
Sosn =20*21/2 = 210,
и грани пирамиды имеют одинаковый наклон.
Смотрите, чтобы много не считать. Вершина пирамиды проектируется в центр ВПИСАННОЙ окружности. Потому что при равном наклоне граней все апофемы равны (они равны h = H/sin(Ф), Н - высота пирамиды, Ф - двугранный угол между гранью и основанием). Вершина пирамиды равноудалена от сторон основания, значит, И ЕЁ проекция на основание будет равноудалена от сторон основания. То есть - это центр вписанной окружности.
Проекцией апофемы является радиус вписанной окружности r.
Причем апофема (любая) h = r/cos(Ф); Боковая поверхность при одинаковых апофемах вычисляется так
Sb = (1/2)*Р*h;
где Р - периметр основания (это просто сумма площадей всех треугольников-боковых граней),
Sb = (1/2)*P*r/cos(Ф) = Sosn/cos(Ф); Эта формула крайне полезная, но я не уверен, что программе она есть, поэтому просто её вывел по ходу решения.
Итак,
H = r*tg(Ф), в нашем случае H = r; r = (a + b - c)/2 = 6; (могу объяснить, как эта формула получается, если надо, это в прямоугольном треугольнике работает. Но можно и так сосчитать, r = 2*S/P = 420/(20+21+29) = 6;)
H = 6; это высота пирамиды
Sosn = 210;
Sb = 210/(корень(2)/2) = 210*корень(2);
Полная поверхность 210*(1 + корень(2));
Задано Вершини трикутника ABC A(-5,1), B(3,-2), C(3,4).
Знайти:
1) Координати описаного кола. Это задание надо, скорее всего, понимать так: найти уравнение окружности, описанной около треугольника АВС.
Для этого надо определить координаты центра этой окружности и найти её радиус.
Решение возможно по нескольким вариантам.
Вот один из них.
Центр описанной окружности находится как точка пересечения серединных перпендикуляров сторон треугольника.
Есть формула, по которой сразу определяется уравнение серединного перпендикуляра по координатам вершин:
(x_1-x_2 )(x-(x_1+x_2)/2)+(y_1-y_2 )(y-(y_1+y_2)/2)=0.
Находим уравнение серединного перпендикуляра к стороне АВ.
Подставим координаты вершин А и В.
(-5-3)(x – ((-5+3)/2) + (1-(-2))(y – (1+(-2))/2) = 0,
-8(x + 1) + 3(y + (1/2)) = 0,
-8x – 8 + 3y + (3/2) = 0, умножим на (-2) и получаем уравнение:
16х – 6у + 13 = 0.
Второй перпендикуляр определяется просто, так как сторона ВС, имеющая точки с одинаковыми абсциссами, - это вертикальный отрезок прямой х = 3 между ординатами у = -2 и у = 4.
Середина её равна у = (-2+4)/2 = 1.
Значит, серединный перпендикуляр к стороне ВС – это горизонтальная прямая у = 1.
Находим их точку пересечения, подставив в уравнение первой прямой значение у = 1:
16х – 6*1 + 13 = 0, отсюда х = -7/16.
Получены координаты центра описанной окружности: О((-7/16); 1).
Далее надо найти радиус окружности.
Он равен расстоянию от центра окружности до любой вершины.
Находим R = OA = √((-5-(-7/16))² + (1-1)²) = 73/16 = 4,5625.
ответ: уравнение окружности (x + (7/16))² + (y – 1)² = (73/16)².
2) косинус кута BAC.
Находим векторы АВ и АС.
AB = {Bx - Ax; By - Ay} = {3 – (-5); -2 - 1} = {8; -3},
AC = {Cx - Ax; Cy - Ay} = {3 – (-5); 4 - 1} = {8; 3}.
Модули векторов равны:
|AB| = √(ABx2 + ABy2) = √(82 + (-3)2) = √(64 + 9) = √73,
|AC| = √(ACx2 + ACy2) = √(82 + 32) = √64 + 9 = √73.
ответ: cos(AB_AC) = (8*8 + (-3)*3)/(√73*√73) = 55/73 ≈ 0,7534.
Угол А равен 0,7175 радиан или 41,1121 градуса.
3) Координати точки D, яка ділить відрізок BC у відношенні до 2:3.
Для этого задания применяется формула:
x(D)=(x(B) + λ*x(C))/(1 + λ), где λ – отношение длин отрезков.
Получаем: x(D)=(3 + (2/3)*3)/(1 + (2/3)) = 3.
y(D)=(-2 + (2/3)*4)/(1 + (2/3)) = 2/5 = 0,4.
ответ: точка D(3; 0,4).