Так как разность этих углов не равна нулю, значит эти углы не равны, следовательно они в сумме дают 180 градусов. Других углов, образованных при пересечении двух параллельных прямых секущей, не может быть. Эти углы - внутренние односторонние, найдем их градусные меры:
1) 180-42 = 138 град - удвоенный меньший угол
2) 138 : 2 = 69 град - меньший угол - один из внутренних односторонних углов
3) 69+42=111 град - больший угол - другой из внутренних односторонних углов
Остальные углы либо накрестлежащие с данными и они им равны, или соответственные с данными и они им тоже равны по свойству соответствующих углов.
А) BADC - пирамида 1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||) ч.т.д б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC А отношение площадей подобных ▲ равно квадрату коэффициенту подобия. S1:S2=k^2 S2=S1:k^2 S2=48:2^2=12см^2 ответ:12 см^2
Так как разность этих углов не равна нулю, значит эти углы не равны, следовательно они в сумме дают 180 градусов. Других углов, образованных при пересечении двух параллельных прямых секущей, не может быть. Эти углы - внутренние односторонние, найдем их градусные меры:
1) 180-42 = 138 град - удвоенный меньший угол
2) 138 : 2 = 69 град - меньший угол - один из внутренних односторонних углов
3) 69+42=111 град - больший угол - другой из внутренних односторонних углов
Остальные углы либо накрестлежащие с данными и они им равны, или соответственные с данными и они им тоже равны по свойству соответствующих углов.
1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC
Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||)
ч.т.д
б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC
А отношение площадей подобных ▲ равно квадрату коэффициенту подобия.
S1:S2=k^2
S2=S1:k^2
S2=48:2^2=12см^2
ответ:12 см^2