Объём получившейся при вращении фигуры равен сумме объёмов двух конусов с общим основанием, радиус которого равен высоте, проведенной из прямого угла исходного треугольника.
Гипотенуза АВ=√(AC²+BC²)=√(12²+5²)=13
Из площади прямоугольного треугольника высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу.
Высота СО=СА•CB:AB
r=СО=60/13
V=V1+V2
V1=S(осно)•AO:3
V2=S(осн)•BO:3
V=S(AO+BO):3
AO+BO=AB=13
V=13S:3
Площадь общего основания
Или 1200•3,14:13 ≈289,846 (ед. площади)
------
Примечание: если запись некорректно отображается, обновите страницу.
198 = 1/2 * (15 + АВ) * 9
396 = (15 + АВ) * 9
396 = 135 + 9АВ
9АВ = 396 - 135
9АВ = 261
АВ = 29
ответ: другое основание трапеции 29 см .
2. Пусть BC и AD - меньшее и большее основания соответственно, ВН - высота.
1) Трапеция равнобедренная ⇒ ∠А = (360° - 120° * 2) : 2 = 60°
2) В прямоугольном ΔАВН ∠АВН = 30° ⇒ АН = 1/2 * АВ = 4 см
По теореме Пифагора:
ВН² = АВ² - АН²
ВН² = 8² - 4²
ВН = √(64 - 16)
ВН = √48
ВН = 4√3
3) SABCD = 1/2 * (BC + AD) * BH = 1/2 * (6 + 12) * 4√3 = 36√3
ответ: площадь трапеции 36√3 см² .
Объём получившейся при вращении фигуры равен сумме объёмов двух конусов с общим основанием, радиус которого равен высоте, проведенной из прямого угла исходного треугольника.
Гипотенуза АВ=√(AC²+BC²)=√(12²+5²)=13
Из площади прямоугольного треугольника высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу.
Высота СО=СА•CB:AB
r=СО=60/13
V=V1+V2
V1=S(осно)•AO:3
V2=S(осн)•BO:3
V=S(AO+BO):3
AO+BO=AB=13
V=13S:3
Площадь общего основания
Или 1200•3,14:13 ≈289,846 (ед. площади)
------
Примечание: если запись некорректно отображается, обновите страницу.