Проведем сечение конуса плоскостью, проходящей через высоту. Получится равнобедренный треугольник с основанием 12 и высотой 8. Рассмотрим "половинку" этого треугольника - прямоугольный треугольник с катетами, являющимися высотой конуса и радусом основания. Из него находим длину образующей - это гипотенуза этого треугольника. То есть, образующая равна 10 (√(64+36)). Проведем высоту из прямого угла к гипотенузе этого треугольника - это и есть искомое расстояние. Рассмотрим прямоугольный треугольник, в котором радиус основания является гипотенузой, а один из катетов - искомая высота. Этот треугольник подобен "половинке" первоначального треугольника, так как у него равны все углы (один - общий - между образующей и радиусом основания, второй - 90°, значит, равен и третий). А, значит, отношение искомой высоты к радусу основания равно отношению высоты конуса к образующей, то есть искомая высота (расстояние от центра основания до образующей) равна: 8/10*6=4,8 см.
Как проверить существует ли треугольник с данными сторонами? Это легко, по теореме каждая сторона треугольника должна быть меньше суммы двух других сторон. И так, проверяем 52 должно быть меньше, чем 38+72 и это так, 38 должно быть меньше, чем 72+52 и это так, 72 должно быть меньше, чем 38+52 и это так. Вывод:такой треугольник существует. 2) 10 должно быть меньше, чем 115+1203 и это так, 115 должно быть меньше, чем 1203+10 и это так, 1203 должно быть меньше чем 115+10, но это не так. Вывод: такого треугольника не существует. 3) 1003 должно быть меньше, чем 705+276 и это не так. Можно сразу сделать вывод, что данного треугольника не существует.
Получится равнобедренный треугольник с основанием 12 и высотой 8. Рассмотрим "половинку" этого треугольника - прямоугольный треугольник с катетами, являющимися высотой конуса и радусом основания.
Из него находим длину образующей - это гипотенуза этого треугольника. То есть, образующая равна 10 (√(64+36)).
Проведем высоту из прямого угла к гипотенузе этого треугольника - это и есть искомое расстояние.
Рассмотрим прямоугольный треугольник, в котором радиус основания является гипотенузой, а один из катетов - искомая высота.
Этот треугольник подобен "половинке" первоначального треугольника, так как у него равны все углы (один - общий - между образующей и радиусом основания, второй - 90°, значит, равен и третий).
А, значит, отношение искомой высоты к радусу основания равно отношению высоты конуса к образующей, то есть искомая высота (расстояние от центра основания до образующей) равна:
8/10*6=4,8 см.
52 должно быть меньше, чем 38+72 и это так,
38 должно быть меньше, чем 72+52 и это так,
72 должно быть меньше, чем 38+52 и это так. Вывод:такой треугольник существует.
2)
10 должно быть меньше, чем 115+1203 и это так,
115 должно быть меньше, чем 1203+10 и это так,
1203 должно быть меньше чем 115+10, но это не так. Вывод: такого треугольника не существует.
3)
1003 должно быть меньше, чем 705+276 и это не так. Можно сразу сделать вывод, что данного треугольника не существует.