Т.к. сумма углов выпуклого четырёхугольника равна 360°
Из этого следует:
130° + 55° + 45° + 125° = 345°
Если сумма углов меньше или больше 360° ⇒ Это не четырёхугольник
Значит нет такого четырёхугольника
б)15
Объяснение:
(n-2)*180=2340
n=15
2. а)Нет . Каждая диагональ делиться на два равных треугольника
б)Нет. Противолежащие стороны равно
в)Да. Противолежащие < равно
г)Да. Диагонали точкой пересечения делится на попалам AC=ВD
3.Решение:
Средняя линия треугольника равна половине основания треугольника, следовательно основание треугольника равно: 7*2=14 (м) , т.к. меньшее основание образовавшейся трапеции, есть средняя линия треугольника, равная 7м
Зная что средняя линия треугольника делит боковые стороны трегольника пополам, боковые стороны треугольники равны:
- первая 5*2=10(м)
-вторая 6*2=12(м)
Отсюда:
периметр треугольника равен: 14+10+12=36(м)
4.высота , проведенная к основанию является медианой ( треугольник равнобедренный ) ⇒ медиана , проведенная к боковой стороне делит ее в отношении 2 : 1 ⇒ меньший отрезок высоты равен 4 , а вся высота 12
1 Нет, не существует.
Объяснение:
Т.к. сумма углов выпуклого четырёхугольника равна 360°
Из этого следует:
130° + 55° + 45° + 125° = 345°
Если сумма углов меньше или больше 360° ⇒ Это не четырёхугольник
Значит нет такого четырёхугольника
б)15
Объяснение:
(n-2)*180=2340
n=15
2. а)Нет . Каждая диагональ делиться на два равных треугольника
б)Нет. Противолежащие стороны равно
в)Да. Противолежащие < равно
г)Да. Диагонали точкой пересечения делится на попалам AC=ВD
3.Решение:
Средняя линия треугольника равна половине основания треугольника, следовательно основание треугольника равно: 7*2=14 (м) , т.к. меньшее основание образовавшейся трапеции, есть средняя линия треугольника, равная 7м
Зная что средняя линия треугольника делит боковые стороны трегольника пополам, боковые стороны треугольники равны:
- первая 5*2=10(м)
-вторая 6*2=12(м)
Отсюда:
периметр треугольника равен: 14+10+12=36(м)
4.высота , проведенная к основанию является медианой ( треугольник равнобедренный ) ⇒ медиана , проведенная к боковой стороне делит ее в отношении 2 : 1 ⇒ меньший отрезок высоты равен 4 , а вся высота 12
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .