Треугольник АВС равнобедренный (АС=ВС - дано). Его высота - перпендикуляр из вершины С к стороне АВ равен половине боковой стороны, так как лежит против угла 30°.
Итак, СН = 5 см. Расстояние от вершины С1 до стороны АВ - это перпендикуляр С1Н к стороне АВ и его проекция на основание АВС - это высота СН (по теореме о трех перпендикулярах).
Тогда в прямоугольном треугольнике СНС1 катет СС1 по Пифагору равен √(С1Н²-СН²) = √(169-25) = 12 см. Это высота нашей прямой призмы. Тогда площадь ее боковой поверхности равна периметру основания, умноженному на высоту. Учитывая, что сторона АВ равна 10√3 см (из прямоугольного треугольника САН АН = 5√3 см, а
Sбок = 120(2+√3) см².
Объяснение:
Треугольник АВС равнобедренный (АС=ВС - дано). Его высота - перпендикуляр из вершины С к стороне АВ равен половине боковой стороны, так как лежит против угла 30°.
Итак, СН = 5 см. Расстояние от вершины С1 до стороны АВ - это перпендикуляр С1Н к стороне АВ и его проекция на основание АВС - это высота СН (по теореме о трех перпендикулярах).
Тогда в прямоугольном треугольнике СНС1 катет СС1 по Пифагору равен √(С1Н²-СН²) = √(169-25) = 12 см. Это высота нашей прямой призмы. Тогда площадь ее боковой поверхности равна периметру основания, умноженному на высоту. Учитывая, что сторона АВ равна 10√3 см (из прямоугольного треугольника САН АН = 5√3 см, а
АВ = 2·АН), Sбок = (20+10√3)·12 = 120(2+√3)см²