3) Диагональ квадрата равна произведению его стороны на , тогда:
ответ: .
4) По теореме Пифагора:
.
Площадь прямоугольного треугольника равна полупроизведению его катетов.
.
ответ: 6; 24.
5) Треугольник равнобедренный (по условию). В равнобедренном треугольнике высота является биссектрисой и медианой. Образовавшиеся два треугольника являются прямоугольными. По теореме Пифагора:
ответ: .
6) Катет, лежащий напротив угла с градусной величиной 30°, равен половине гипотенузы. Пусть - гипотенуза этого треугольника. По теореме Пифагора:
Больше сделать здесь ничего нельзя, поскольку длина гипотенузы нам не дана. Но если бы она была дана, то длину катета можно было бы вычислить через эту формулу.
1) По теореме Пифагора:
ответ: .
2) По теореме Пифагора:
.
ответ: 8.
3) Диагональ квадрата равна произведению его стороны на , тогда:
ответ: .
4) По теореме Пифагора:
.
Площадь прямоугольного треугольника равна полупроизведению его катетов.
.
ответ: 6; 24.
5) Треугольник равнобедренный (по условию). В равнобедренном треугольнике высота является биссектрисой и медианой. Образовавшиеся два треугольника являются прямоугольными. По теореме Пифагора:
ответ: .
6) Катет, лежащий напротив угла с градусной величиной 30°, равен половине гипотенузы. Пусть - гипотенуза этого треугольника. По теореме Пифагора:
Больше сделать здесь ничего нельзя, поскольку длина гипотенузы нам не дана. Но если бы она была дана, то длину катета можно было бы вычислить через эту формулу.
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).