с тестом по геометрии, буду очень благодарна! Найдите площадь прямоугольника ABCD с вершинами А(0; 1), В(4; 3) и D(1; –1). A) 10 B) 50 C) 100 D) 20 E) 8
Расстояние между двумя точками -- это отрезок, соединяющий эти точки.
Воспользуемся формулой нахождения расстояния между двумя точками.
Пусть А(a₁; a₂), B(b₁, b₂), тогда
В нашем случае даны точки O(0; 0) и M(x; y). Подставим их координаты в формулу:
Воспользуемся координатной плоскость и теоремой Пифагора.
Изобразим на координатной плоскости точки O(0; 0) и M(x; y). Соединим их. Затем опустим перпендикуляры от точки М на ось ОХ и OY, обозначим получившиеся точки N(x; 0) и K(0; y).
(координатная плоскость во вложениях)
Получаем следующее: длина отрезка OK равна y - 0 = y, ON = x.
Также MN = OK = y
Рассмотрим ΔMNO. Он прямоугольный. Применим к нему теорему Пифагора и выразим гипотенузу OM:
ответ: √(x² + y²)
Объяснение:
Расстояние между двумя точками -- это отрезок, соединяющий эти точки.
Воспользуемся формулой нахождения расстояния между двумя точками.
Пусть А(a₁; a₂), B(b₁, b₂), тогда
В нашем случае даны точки O(0; 0) и M(x; y). Подставим их координаты в формулу:
Воспользуемся координатной плоскость и теоремой Пифагора.
Изобразим на координатной плоскости точки O(0; 0) и M(x; y). Соединим их. Затем опустим перпендикуляры от точки М на ось ОХ и OY, обозначим получившиеся точки N(x; 0) и K(0; y).
(координатная плоскость во вложениях)
Получаем следующее: длина отрезка OK равна y - 0 = y, ON = x.
Также MN = OK = y
Рассмотрим ΔMNO. Он прямоугольный. Применим к нему теорему Пифагора и выразим гипотенузу OM:
Задача решается через векторы.
Построим вектор ;
Середина D отрезка AB может быть найдена откладыванием половины вектора от точки A
;
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты в обе возможные стороны
Вектор высоты перпендикулярен вектору основания , а значит его проекции накрест-пропорциональны с противоположным знаком:
(I) , что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: (II) ;
Таким образом вектор пропорционален вектору , поскольку для вектора выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора ;
Вектор имеет длину ;
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет , т.к ;
Значит , а стало быть ;
В итоге .
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ:
/// примечание: ;
/// примечание: .