В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Солнышко150986
Солнышко150986
01.03.2023 19:36 •  Геометрия

с тестом по геометрии, буду очень благодарна! Найдите площадь прямоугольника ABCD с вершинами А(0; 1), В(4; 3) и D(1; –1).
A) 10
B) 50
C) 100
D) 20
E) 8

Показать ответ
Ответ:
grenzygaming
grenzygaming
12.05.2020 20:32

ответ: √(x² + y²)

Объяснение:

Расстояние между двумя точками -- это отрезок, соединяющий эти точки.

Воспользуемся формулой нахождения расстояния между двумя точками.

Пусть А(a₁; a₂), B(b₁, b₂), тогда

|\overrightarrow{AB}|=\sqrt{(b_1-a_1)^2+(b_2-a_2)^2}

В нашем случае даны точки O(0; 0) и M(x; y). Подставим их координаты в формулу:

OM=|\overrightarrow{OM}|=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}

Воспользуемся координатной плоскость и теоремой Пифагора.

Изобразим на координатной плоскости точки O(0; 0) и M(x; y). Соединим их. Затем опустим перпендикуляры от точки М на ось ОХ и OY, обозначим получившиеся точки N(x; 0) и K(0; y).

(координатная плоскость во вложениях)

Получаем следующее: длина отрезка OK равна y - 0 = y, ON = x.

Также MN = OK = y

Рассмотрим ΔMNO. Он прямоугольный. Применим к нему теорему Пифагора и выразим гипотенузу OM:

OM^2=ON^2+MN^2\\ \\ OM=\sqrt{ON^2+MN^2} =\sqrt{x^2+y^2}


Самостоятельно запиши формулу для нахождения расстояния от начала координат О(0;0) до точки М(х;у)
0,0(0 оценок)
Ответ:
даньго
даньго
17.04.2023 10:07
>>> идёт оформление рисунка <<< ожидайте ...

Задача решается через векторы.
Построим вектор \overline{AB} ( (-1)-(-9) , 4-10 ) = \overline{AB} ( 8 , -6 ) ;

Середина D отрезка AB может быть найдена откладыванием половины вектора \overline{AB} от точки A

\frac{1}{2} \overline{AB} = \overline{ ( 4 , -3 ) } ;

Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;

От точки D нужно отложить вектор высоты \overline{h} в обе возможные стороны

Вектор высоты \overline{h} перпендикулярен вектору основания \overline{AB}, а значит его проекции накрест-пропорциональны с противоположным знаком:

(I) \frac{x_h}{y_h} = -\frac{ y_{AB} }{ x_{AB} }, что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: x_h * x_{AB} + y_h * x_{AB} = 0 (II) ;

Таким образом вектор \overline{h} пропорционален вектору \overline{h_o} ( 3 , 4 ) , поскольку для вектора \overline{h_o} выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора \overline{h} ;

Вектор \overline{h_o} имеет длину h_o = \sqrt{ x_{ho}^2 + y_{ho}^2 } = \sqrt{ 3^2 + 4^2 } = \sqrt{ 25 } = 5 ;

Аналогично, AB = 10

При этом, поскольу треугольник равносторонний, то значит его высота составляет h = \frac{ \sqrt{3} }{2}AB, т.к \cos{ 60^o } = \frac{ \sqrt{3} }{2} ;

Значит h = 5 \sqrt{3}, а стало быть h = \sqrt{3} h_o ;

В итоге \overline{h} ( 3\sqrt{3} , 4\sqrt{3} ).

Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:

ОТВЕТ:

C_1 ( 3\sqrt{3} - 5 , 7 + 4\sqrt{3} ) /// примечание: 3\sqrt{3} 5 ;

C_2 ( - 3\sqrt{3} -5 , 7 - 4\sqrt{3} ) /// примечание: 4\sqrt{3} < 7 .

Вычислить координаты вершины с равностороннего треугольника авс, если даны координаты а(-9,10), в(-1
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота