1) откладываешь от произвольной точки вектор а , затем от конца вектора а откладываешь вектор б, потом из начала вектора а ведёшь вектор к концу вектора б, это и будет вектор суммы по правилу треугольника
2)из произвольной точки откладываешь сразу и вектор б и вектор а, потом из конца вектора а откладываешь вектор равный вектору б и так же из вектора б откладываешь вектор равный вектору а, они должны сойтись в одной точке, потом из начальной точки ведешь вектор в точку где у тебя сошлись два вектора, это и будет вектор суммы по правилу параллелограмма
3) из произвольной точки откладываешь первый вектор, из его конца второй, затем из конца второго третий и так до последнего, потом ведёшь вектор из начальной точки к концу последнего(по сути как и в первом примере но векторов больше) и это и будет вектор суммы
на фото вектор с это ответ, вектора а и b взял произвольные
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
я подробно опишу что именно нужно делать
Объяснение:
1) откладываешь от произвольной точки вектор а , затем от конца вектора а откладываешь вектор б, потом из начала вектора а ведёшь вектор к концу вектора б, это и будет вектор суммы по правилу треугольника
2)из произвольной точки откладываешь сразу и вектор б и вектор а, потом из конца вектора а откладываешь вектор равный вектору б и так же из вектора б откладываешь вектор равный вектору а, они должны сойтись в одной точке, потом из начальной точки ведешь вектор в точку где у тебя сошлись два вектора, это и будет вектор суммы по правилу параллелограмма
3) из произвольной точки откладываешь первый вектор, из его конца второй, затем из конца второго третий и так до последнего, потом ведёшь вектор из начальной точки к концу последнего(по сути как и в первом примере но векторов больше) и это и будет вектор суммы
на фото вектор с это ответ, вектора а и b взял произвольные
в 3 векторы тоже произвольные
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²