С ПОЛНЫМ РЕШЕНИЕМ И РИСУНКОМ. ХОТЯ БЫ ОДН/ДВЕ
3. Для куба ABCDA1B1C1D1 найдите угол между прямыми BD и CA
A. 30. B. 45 C. 60 D. 90
5. Найдите угол между скрещивающимися ребрами правильной треугольной пирамиды
A. 30 B. 45 C. 60 D. 90
7. Для правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 найдите угол между прямыми BC C1D
A. 30 B. 45 C. 60 D. 90
9. Для куба ABCDA1B1C1D1 найдите косинус угла между прямой BD1 и плоскостью BCC1
A. корень из трёх/три B. корень из шести/три C. корень из двух/три D. корень из шести/два.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
Площадь треугольника можно вычислить по формуле:
S=(1/2)*a*b*sina, где а и b - стороны треугольника, а sina - синус угла между этими сторонами.
S=(1/2)*6*8"(1/2)=12см^2.
Или так: проведем высоту ВН к стороне АС. Это катет, лежащий против угла 30°. Он равен половине гипотенузы.
Тогда если сторона АВ=6см (гипотенуза), а сторона АС=8см, то ВН=3см и площадь треугольника равна S=(1/2)*AC*BH =(1/2)*8*3=12см^2.
Если АВ=8см, а АС=6см, то ВН=4см и S=(1/2)*6*4=12см^2.
ответ: площадь треугольника равна 12см^2.
Объяснение: