Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Объяснение:
отрезок EF, точка С, не лежащая на прямой EF, и точка D,
лежащая на прямой EF. Выясните взаимное расположение прямой
CD и отрезка EF.
[2]
2. Найдите углы, образованные при пересечении двух прямых, если
один из них равен 520.
[2]
3. Точки А, В и С расположены на одной прямой, причем AB=6см,
ВС=14см. Какой может быть длина отрезка АС?
[2]
4
а) Начертите прямой угол ABD;
b) Внутри угла проведите луч ВС;
c) Найдите величину ZABC и CBD , если ZABC на 40°
больше 2CBD.
[3]
5. Один из смежных углов в 4 раза меньше другого .Найдите эти
углы.
[3]
6. На прямой отложены два равных отрезка АС и СВ. На отрезке CB
взята точка D, которая делит его в отношении 2:3, считая от точки С.
Найдите длину отрезков Ac, DB и AB, если CD-14 см.
[3]
7. Ланы два угла лов и DOC с общей вершиной. Угол DOC
расположен внутри угла лов. Стороны одного угла
перпендикулярны к сторонам другого. Найдите эти углы, если
разность между ними равна прямому углу,
(5)