ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
4) Дано: <F
Найти: <K
<F = 30° => <K = 90-<F => <K = 60°.
<K = 60°.
5) Дано: LM, <L
Найти: KM(катет)
<L = 30°
По теорему о 30-градусном угле прямоугольно треугольника: катет, противоположный углу 30 градусов, равна половине гипотенузы. =>
KM = LM/2 = 4
KM = 4.
6) Дано: DF, <F
Найти: CF(гипотенузу)
<F = 60° => <C = 90-<F = 30°
Сторона, противоположная углу <F, это DF
По той же теореме, но обратным путём: CF(гипотенуза) = DF /2 => CF = 7*2 = 14
CF = 14.
7)
Дано: BO, <C
Найти: BA(гипотенузу)
<C = 60° =. <A = 90-<C = 30°
Биссектриса, разделила треугольник на 2 прямоугольного треугольника, так как углы, созданные биссектрисой — равны 90°.
BO = 3 => BA = 3*2 = 6 (так как BO — это стоорна противоположная углу 30 градусов(<A))
BA(гипотенуза) = 6.
решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3