Объяснение:
Решение прикрепил ниже
Не знаю, как здесь обозначить вектор. Пусть будет ⁻. То есть, а⁻ - вектор а.
a⁻ (-5; -10); b⁻ (2; 7).
1) a⁻ + b⁻ (-3; -3)
2) 4 · a⁻ (-20; -40)
3) -2 · a⁻ + 3 · b⁻ (16; 41)
4) -b⁻ (-2; -7)
p⁻ (-3; 4); l⁻ (1; 2)
1) p⁻ - l⁻ (-4; 2)
2) Признак коллинеарности векторов: векторы коллинеарны, когда их координаты пропорциональны. Проверяем, вектор (p⁻ - l⁻) имеет координаты (-4; 2), а вектор k - координаты (4; -2).
Так как их координаты пропорциональны, то эти векторы коллинеарны.
Если А (-2; 2), B (3; 5), то AB⁻ (5; 3).
Объяснение:
Решение прикрепил ниже
Не знаю, как здесь обозначить вектор. Пусть будет ⁻. То есть, а⁻ - вектор а.
a⁻ (-5; -10); b⁻ (2; 7).
1) a⁻ + b⁻ (-3; -3)
2) 4 · a⁻ (-20; -40)
3) -2 · a⁻ + 3 · b⁻ (16; 41)
4) -b⁻ (-2; -7)
p⁻ (-3; 4); l⁻ (1; 2)
1) p⁻ - l⁻ (-4; 2)
2) Признак коллинеарности векторов: векторы коллинеарны, когда их координаты пропорциональны. Проверяем, вектор (p⁻ - l⁻) имеет координаты (-4; 2), а вектор k - координаты (4; -2).
Так как их координаты пропорциональны, то эти векторы коллинеарны.
Если А (-2; 2), B (3; 5), то AB⁻ (5; 3).