С ГЕОМЕТРИЕЙ В параллелепипеде ABCDA1B1C1D1 . ABCD - ромб ; BB1 перпендикулярен ABC , Угол ADB = 120 градусов . AC перпендикулярен ВD = О ; AD = 6 корней из 3 ; АА1= 9.
1) Определить угол между прямой АС и плоскостью ВВ1D.
2) Найти расстояние от точки С до плоскости BB1D.
3) Определить угол между прямой С1О и плоскостью АВС
y = 2sinx + 1
Объяснение:
На рисунке изображен график функции y = 2sinx + 1
График функции y = sinx сдвинут относительно оси Y на +1 единицу, коэффициент растяжения вдоль оси Y = 2.
Свойства функции y = 2sinx + 1.
Функция y = 2sinx + 1 периодическая, период T = 2π
Ось Y пересечена в т.(0; 1 ):
x = 0; y = 2*sin0 + 1 = 2 * 0 + 1 = 1
Нули функции:
y = 0; 2sinx+1 = 0; sinx = -1/2
x₁ = arcsin(-1/2) + 2πn = 7π/6 + 2πn; n∈Z
x₂ = π - arcsin(-1/2) + 2πn = π - 7π/6 + 2πn = -π/6 + 2πn; n∈Z
Максимальное значение функции y = 2 * 1 + 1 = 3 (т.к. максимальное значение функции sinx = 1)
Минимальное значение функции y = 2 *(-1) + 1 = -2 + 1 = -1 (т.к. минимальное значение функции sinx = -1).
ABC -- нижнее основание, A1B1C1 -- верхнее основание, D -- проекция точки C1 на плоскость основания ABC, C1D -- высота призмы, C1CD=45°
AA1C1C и BB1C1C -- ромбы с острым углом 30°, AA1B1B -- квадрат
Из треугольника C1DC:
sin C1CD = C1D/C1C
sin(45°)=4*корень(2) / C1C
С1С=4*корень(2)/sin(45°)=4*корень(2)/(корень(2)/2)=4*2=8
Так как все боковые грани -- ромбы (квадрат -- это тоже ромб), то длины всех рёбер призмы равны между собой, следовательно, они равны 8.
Площадь боковой поверхности равна сумме площадей ромбов и квадрата.
Sромба=AC*AA1*sin(30°)=8*8*1/2=32
Sквадрата=AB*AA1=8*8=64
Sбок=2*Sромба+Sквадрата=2*32+64=128