Рисунок без буквенных обозначений (кроме C,O,M), обозначишь, если нужно как угодно, хотя всё понятно и так. Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления. МО=3, как катет, лежащий против угла в 30° Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания. Далее вспоминаем свойство медиан Δ-ка: Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины. Поэтому Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Для удобства и быстроты всей писанины введём буквенные обозначения -сторона основания, - апофема, - высота основания. Эти три величины потребуются для всего вычисления.
МО=3, как катет, лежащий против угла в 30°
Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания.
Далее вспоминаем свойство медиан Δ-ка:
Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Поэтому
Теперь находим :
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Дана правильная треугольная пирамида со стороной основания 8 и высотой 10.
Высота основания h = a*cos30° = 8*√3/2 = 4√3.
Проекция апофемы на основание правильной треугольной пирамиды равна h/3 = 4√3/3.
Находим апофему А = √(Н² + (h/3)²) = √(100 + (48/9)) = √948/3 = 2√237/3.
Находим площадь боковой поверхности:
Sбок = (1/2)РА = (1/2)*(3*8)*(2√237/2) = 8√237 ≈ 123,1584 кв.ед.
Площадь основания So = a²√3/4 = 64√3/4 = 16√3 ≈ 27,71281 кв.ед.
Полная поверхность S = So + Sбок = 16√3 + 8√237 ≈ 150,8712 кв.ед.
Объём V = (1/3)SoH = (1/3)*16√3*10 = 160√3/3 ≈ 92,3760 куб.ед.