Параллельные плоскости пересекаются секущей плоскостью по параллельным прямым. Все грани параллелепипеда - параллелограммы. 1. АВ║А₁В₁, АВ = А₁В₁ как противоположные стороны параллелограмма, А₁В₁║C₁D₁, А₁В₁ = C₁D₁ как противоположные стороны параллелограмма, значит АВ║C₁D₁ и сечение (АВС₁) проходит через ребро C₁D₁. АВС₁D₁ - искомое сечение АВ = C₁D₁, тогда АВC₁D₁ - параллелограмм.
2. Боковые ребра параллелепипеда параллельны и равны. Сечение АСС₁ проходит через ребро СС₁ и значит пройдет через ребро АА₁. АА₁С₁С - искомое сечение. АА₁║С₁С и АА₁ = С₁С, значит АА₁С₁С - параллелограмм.
Две точки А и А' плоскости называются симметричными относительно прямой с, если эта прямая проходит через середину отрезка АА' и перпендикулярна к нему. Каждая точка прямой c считается симметричной самой себе.
Соответствие, при котором каждой точке А сопоставляется симметричная ей относительно прямой с точка А', называется осевой симметрией. Прямая с называется осью симметрии.
Две фигуры F и F' называются симметричными относительно оси с, если каждой точке одной фигуры соответствует симметричная точка другой фигуры.
Фигура F называется симметричной относительно оси с, если она симметрична сама себе.
Примем без доказательства, что при симметрии прямые переходят в прямые, причем сохраняются расстояния и углы.
Представление об осевой симметрии дает перегибание листа бумаги. При этом линия сгиба будет осью симметрии, а каждая точка листа совместится с симметричной точкой.
В природе оси симметрии имеют листья деревьев, лепестки цветов, бабочки, стрекозы и мн. др.
Все грани параллелепипеда - параллелограммы.
1. АВ║А₁В₁, АВ = А₁В₁ как противоположные стороны параллелограмма,
А₁В₁║C₁D₁, А₁В₁ = C₁D₁ как противоположные стороны параллелограмма,
значит
АВ║C₁D₁ и сечение (АВС₁) проходит через ребро C₁D₁. АВС₁D₁ - искомое сечение
АВ = C₁D₁, тогда АВC₁D₁ - параллелограмм.
2. Боковые ребра параллелепипеда параллельны и равны.
Сечение АСС₁ проходит через ребро СС₁ и значит пройдет через ребро АА₁. АА₁С₁С - искомое сечение.
АА₁║С₁С и АА₁ = С₁С, значит АА₁С₁С - параллелограмм.
Соответствие, при котором каждой точке А сопоставляется симметричная ей относительно прямой с точка А', называется осевой симметрией. Прямая с называется осью симметрии.
Две фигуры F и F' называются симметричными относительно оси с, если каждой точке одной фигуры соответствует симметричная точка другой фигуры.
Фигура F называется симметричной относительно оси с, если она симметрична сама себе.
Примем без доказательства, что при симметрии прямые переходят в прямые, причем сохраняются расстояния и углы.
Представление об осевой симметрии дает перегибание листа бумаги. При этом линия сгиба будет осью симметрии, а каждая точка листа совместится с симметричной точкой.
В природе оси симметрии имеют листья деревьев, лепестки цветов, бабочки, стрекозы и мн. др.