Даны вершины треугольника А(-2,0,1), В(8,-4,9), С(-1,2,3).
1) Находим длины сторон по разности координат точек.
АВ = √((8-(-2))² + ((-4-0)² + (9-1)²) = √(100 + 16 + 64) = √180 = 6√5.
BC = √((-1-8)² + ((2-(-4))² + (3-9)²) = √(81 + 36 + 36) = √153.
АC = √((-1-(-2))² + ((2-0)² + (3-1)²) = √(1 + 4 + 4) = √9 = 3.
Далее по теореме косинусов определяем углы треугольника.
a(ВС) b(АС) c(АВ) p 2p S
12,36931688 3 13,41640786 14,39286237 28,78572474 18
153 9 180
2,023545494 11,39286237 0,976454506 22,51115808 324 18
cos A = 0,447213595 cos B = 0,97618706 cos С = -0,242535625
Аrad = 1,107148718 Brad = 0,218668946 Сrad = 1,81577499
Аgr = 63,43494882 Bgr = 12,52880771 Сgr = 104,0362435.
Как видим - треугольник тупоугольный.
2) Находим координаты точки М как середины стороны АС.
М = (А(-2,0,1) + С(-1,2,3))/2 = (-1,5; 1; 2).
Длина ВМ = √((-1,5-8)² + ((1-(-4))² + (2-9)²) = √(90,25 + 25 + 49) = √164,25 ≈ 12,81600562.
Даны вершины треугольника А(-2,0,1), В(8,-4,9), С(-1,2,3).
1) Находим длины сторон по разности координат точек.
АВ = √((8-(-2))² + ((-4-0)² + (9-1)²) = √(100 + 16 + 64) = √180 = 6√5.
BC = √((-1-8)² + ((2-(-4))² + (3-9)²) = √(81 + 36 + 36) = √153.
АC = √((-1-(-2))² + ((2-0)² + (3-1)²) = √(1 + 4 + 4) = √9 = 3.
Далее по теореме косинусов определяем углы треугольника.
a(ВС) b(АС) c(АВ) p 2p S
12,36931688 3 13,41640786 14,39286237 28,78572474 18
153 9 180
2,023545494 11,39286237 0,976454506 22,51115808 324 18
cos A = 0,447213595 cos B = 0,97618706 cos С = -0,242535625
Аrad = 1,107148718 Brad = 0,218668946 Сrad = 1,81577499
Аgr = 63,43494882 Bgr = 12,52880771 Сgr = 104,0362435.
Как видим - треугольник тупоугольный.
2) Находим координаты точки М как середины стороны АС.
М = (А(-2,0,1) + С(-1,2,3))/2 = (-1,5; 1; 2).
Длина ВМ = √((-1,5-8)² + ((1-(-4))² + (2-9)²) = √(90,25 + 25 + 49) = √164,25 ≈ 12,81600562.
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².