В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Доказательство: Пусть дан прямоугольный треугольник с катетами а и b и гипотенузой с. Составим из четырех таких треугольников квадрат со стороной а + b как на рисунке. Внутри получим квадрат со стороной с. Площадь большого квадрата равна сумме площадей составляющих его фигур: S = 4·SΔ + c² = 4 · ab/2 + c² или S = (a + b)² Приравняем правые части: 2ab + c² = (a + b)² 2ab + c² = a² + b² + 2ab c² = a² + b² Что и требовалось доказать.
Доказательство:
Пусть дан прямоугольный треугольник с катетами а и b и гипотенузой с.
Составим из четырех таких треугольников квадрат со стороной а + b как на рисунке.
Внутри получим квадрат со стороной с.
Площадь большого квадрата равна сумме площадей составляющих его фигур:
S = 4·SΔ + c² = 4 · ab/2 + c²
или
S = (a + b)²
Приравняем правые части:
2ab + c² = (a + b)²
2ab + c² = a² + b² + 2ab
c² = a² + b²
Что и требовалось доказать.
8√3
Объяснение:
MA = MB = MC = MD, значит М - центр описанной около четырехугольника окружности.
Если четырехугольник вписан в окружность, то суммы противолежащих углов равны 180°.
∠А = 180° - ∠С = 180° - 95° = 85°
∠D = 180° - ∠B = 180° - 115° = 65°
ΔАВМ равнобедренный, значит углы при основании АВ равны, ⇒
∠АМВ = 180° - 2∠А = 180° - 2 · 85° = 180° - 170° = 10°
ΔMCD равнобедренный, значит углы при основании CD равны, ⇒
∠CМD = 180° - 2∠D = 180° - 2 · 65° = 180° - 130° = 50°
∠ВМС = 180° - (∠АМВ + ∠CМD) = 180° - 60° = 120°
ΔВМС: по теореме косинусов:
BC² = MB² + MC² - 2·MB·MC·cos120°
144 = r² + r² - 2 · r · r · (-1/2)
144 = 2r² + r²
3r² = 144
r² = 48
r = 4√3
AD = 2r = 8√3