Прямая перпендикулярна плоскости, если она перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости ВД ⊥ АС (диагонали квадрата пересекаются под прямым углом) проводим прямые МВ и МД и получаем два прямоугольных треугольника МАВ и МАД ∆МАВ = ∆МАД ( по двум катетам) => MB = MД, значит ∆ МВД - равнобедренный ВО = ОД ( диагонали квадрата пунктом пересечения делятся пополам) МО - медиана, а раз ∆МВД - равнобедренный, то она будет еще и высотой и тогда МО ⊥ ВД, а поскольку еще АС ⊥ ВД, то прямая ВD перпендикулярна плоскости АМО Что и требовалось доказать
HA = 6 см
КА = 6√2 см
КВ = 12 см
НВ = 6√3 см
см
Объяснение:
Проведем KH⊥α. Тогда КН = 6 см - расстояние от точки К до плоскости α.
Угол между прямой и плоскостью - это угол между прямой и ее проекцией на эту плоскость.
НА - проекция КА на плоскость α, значит ∠КАН = 45°,
НВ - проекция КВ на плоскость α, значит ∠КВН = 30°.
∠АНВ = 135°.
ΔКНА: ∠КНА = 90°, ∠КАН = 45°, значит треугольник равнобедренный,
НА = КН = 6 см
КА = 6√2 см как гипотенуза равнобедренного прямоугольного треугольника.
ΔКНВ: ∠КНВ = 90°,
КВ = 2КН = 12 см по свойству катета, лежащего против угла в 30°,
по теореме Пифагора:
НВ = √(КВ² - КН²) = √(144 - 36) = √108 = 6√3 см
Из ΔАНВ по теореме косинусов:
АВ² = НА² + НВ² - 2·НА·НВ·cos∠AHB
cos135° = cos(180° - 45°) = - cos45° = √2/2
AB² = 36 + 108 + 2 · 6 · 6√3 · √2/2 = 144 + 36√6
см
ВД ⊥ АС (диагонали квадрата пересекаются под прямым углом)
проводим прямые МВ и МД и получаем два прямоугольных треугольника МАВ и МАД
∆МАВ = ∆МАД ( по двум катетам) => MB = MД,
значит ∆ МВД - равнобедренный
ВО = ОД ( диагонали квадрата пунктом пересечения делятся пополам)
МО - медиана, а раз ∆МВД - равнобедренный, то она будет еще и высотой и тогда МО ⊥ ВД,
а поскольку еще АС ⊥ ВД, то прямая ВD перпендикулярна плоскости АМО
Что и требовалось доказать