Т.к. биссектриса является высотой, треугольник ABC - равнобедренный, с основанием AC. Значит, AB=BC, а BK также является медианой, т.е. AK=CK. Периметр ABK P=AB+BK+AK; Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см
Задача 2 Т.к. AB=BC, AF=EC=AB/2=BC/2; Рассмотрим треугольники AFC и CEA Они равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA) Тогда углы EAC=FCA. Значит, угол BAE=BAC-EAC=BCF Углы FMA=EMC, как вертикальые Тогда углы AFM=180-FMA-FAM=MEC Значит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM) Тогда AM=MC => треугольник AMC - равнобедренный
тогда углы при основании <Вп=(180-120) /2 = 30
углы при основании являются вписанными <Вп - опираются на хорды ( боковая сторона)
на эту же хорду/сторону опирается центральный угол <Цн
центральный угол в 2 раза больше вписанного <Цн =2* <Вп = 2*30=60 град
из центра описанной окружности боковые стороны видны под углом 60 град
основание видно под углом 2*<Цн =2*60=120 град
2.Треугольник АВС,
уголА=36,
уголС=48,
уголВ=180-36-48=96,
центр вписанной окружности О лежит на пересечении биссекрис, треугольник АОС,
уголАОС=180-1/2уголА-1/2уголС=180-18-24=138 - видна сторона АС, треугольник АОВ,
уголАОВ=180-1/2уголА-1/2уголВ=180-18-48=114-видна сторона АВ,
треугольник ВОС, уголВОС=180-1/2уголС-1/2уголВ=180-24-48=108 - видна стгорона ВС
3.четырехугольник АВСД вписан в окружность, уголА/уголВ/уголС=3/4/6=3х/4х/6х,
около четырехугольника можно описать окружность при условии что сумма противоположных углов=180,
уголА+уголС=180=уголВ+уголД, 3х+6х=4х+уголД, уголД=9х-4х=5х, 3х+6х=180, х=20, уголА=3*20=60, уголВ=4*20=80, уголС=6*20=120, уголД=5*20=100
4.AB+DC=AD+BC P=48 48:2=24 AB+DC=24 AD+BC=24 x+4 - AB x - CD x+x+4=24 x=10 14=AB 10=CD 1y - BC 2y - AD 1y+2y=24 y=8 8=BC 16=AD
Периметр ABK P=AB+BK+AK;
Периметр ABC=AB+AC+BC=AB+AK+KB+BC=2AB+2AK=2(AB+AK)=2(Pabk-BK)=2(16-5)=2*11=22 см
Задача 2
Т.к. AB=BC, AF=EC=AB/2=BC/2;
Рассмотрим треугольники AFC и CEA
Они равны по двум сторонам (AF=EC и AC - общая) и углу между ними (EAC=FCA)
Тогда углы EAC=FCA.
Значит, угол BAE=BAC-EAC=BCF
Углы FMA=EMC, как вертикальые
Тогда углы AFM=180-FMA-FAM=MEC
Значит, треугольники AFM=EMC по стороне (EC=AF) и двум прилежащим к ней углам (AFM=MEC и FAM=ECM)
Тогда AM=MC => треугольник AMC - равнобедренный