Сумма внешнего и внутреннего углов при одной вершине треугольника составляют развернутый угол, равный 180°. Сумма двух внешних и двух внутренних =2•180=360°. Из этого следует, что сумма двух внутренних углов равна 360°-200°=160°, в то время как третий угол прямоугольного треугольника равен 90°, что противоречит сумме углов треугольника 180°.
Следовательно, дана сумма внешних углов при прямом угле и одном из острых. Внешний угол прямоугольного треугольника при вершине прямого угла равен 90°. Внешний угол при вершине одного из острых углов 200°-90°=110°, следовательно, внутренний смежный ему угол треугольника 180°-110°=70°. Сумма острых углов прямоугольного треугольника 90°, ⇒ второй острый угол 90°-70°=20°.
1)Пусть АВСД - данный параллелограмм,угол А-тупой, ВН -высота. АН=3 см, НД=7см. Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=30/10=3 см. В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=3, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/3= 30 градусов. В параллелограмме АВСД угол А=углуС=30 градусов, а угол В=углу Д= (360-3*30)=270/3=90 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС)/АВ*АД. (записать в виде дроби), SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).
Сумма внешнего и внутреннего углов при одной вершине треугольника составляют развернутый угол, равный 180°. Сумма двух внешних и двух внутренних =2•180=360°. Из этого следует, что сумма двух внутренних углов равна 360°-200°=160°, в то время как третий угол прямоугольного треугольника равен 90°, что противоречит сумме углов треугольника 180°.
Следовательно, дана сумма внешних углов при прямом угле и одном из острых. Внешний угол прямоугольного треугольника при вершине прямого угла равен 90°. Внешний угол при вершине одного из острых углов 200°-90°=110°, следовательно, внутренний смежный ему угол треугольника 180°-110°=70°. Сумма острых углов прямоугольного треугольника 90°, ⇒ второй острый угол 90°-70°=20°.
Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=30/10=3 см.
В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=3, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/3= 30 градусов.
В параллелограмме АВСД угол А=углуС=30 градусов, а угол В=углу Д= (360-3*30)=270/3=90 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС)/АВ*АД. (записать в виде дроби), SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).