Пусть центр окружности будет О, и это точка пересечения диаметров. Треугольники АOD и COE равны - их углы равны: при О - как вертикальные, а острые углы вписанные и опираются на равные дуги, ко всему эти треугольники еще и равнобедренные, и на основании этого тоже углы равны. Треугольник АЕD - прямоугольный по условию. DE - катет, AD - гипотенуза. Из доказанного выше равенства треугольников АD=CB=4, тогда синус А= DE:AD=(√3):4 Острый угол DOВ между диаметрами - центральный угол, который опирается на ту же дугу, что угол DАЕ Следовательно,∠DOВ равен 2* ∠DAB sin∠DAE=DE:AD=(√3):4 Синус DOB найдем по формуле = sin 2α=2*sin(α)*cos(α) Косинус α =АЕ:AD АЕ из прямоугольного треугольника AED по т.Пифагора АЕ=√(16-3)=√13 cos∠DAE=(√13):4 Тогда sin DOB=[2*(√3):4]*[(√13):4])= (√39):8=0,7806 и ∠ DOB=arcsin 0,7806 --------------------------- Или: Треугольник АDB - прямоугольный ( ADB опирается на диаметр АВ). DE в нем высота, квадрат которой равен произведению DE²=АЕ*ВЕ 3=(√13)*ВЕ ВЕ=3:√13 Тогда диаметр равен АЕ+ВЕ=√13+3:√13=16:√13, а радиус ОВ=ОD=8:√13 Тогда синус DOB=DE:OD=(√3):(8:√13)= (√39):8=0,7806 и угол DOB=arcsin 0,7806 По таблице синусов можно найти его градусную величину: 51°20' --------------- И "на закуску" то, с чего можно было начать и остановиться на этом. Ясно, что найдя синус угла DAE, мы можем по таблице найти этот угол, а умножив на два его значение, найти искомый угол DOE. Итак, синус ∠DAE=(√3):4=0,4330. По таблице синусов это синус угла 25° 40'. ⇒ ∠ DOВ=2*25° 40'=51°20' ------ [email protected]
Та как диагональ перпендикулярна боковой стороне параллелограмма она будет являться высотой данного параллелограмма Площадь параллелограмма S=a*h (где a – сторона h – высота) Выразим из формулы высоту: h=S/a h=12/4=3 Рассмотрим треугольник образованный боковой стороной параллелограмма, диагональю и основанием. Данный треугольник прямоугольный с гипотенузой равной основанию параллелограмма. По теореме Пифагора гипотенуза равна с= √(a^2+h^2) (где a и h – катеты) с= √(4^2+3^2)= √(16+9)= √25= 5 ответ: основание данного параллелограмма равна 5
Треугольник АЕD - прямоугольный по условию.
DE - катет, AD - гипотенуза.
Из доказанного выше равенства треугольников АD=CB=4, тогда
синус А= DE:AD=(√3):4
Острый угол DOВ между диаметрами - центральный угол, который опирается на ту же дугу, что угол DАЕ
Следовательно,∠DOВ равен 2* ∠DAB
sin∠DAE=DE:AD=(√3):4
Синус DOB найдем по формуле =
sin 2α=2*sin(α)*cos(α)
Косинус α =АЕ:AD
АЕ из прямоугольного треугольника AED по т.Пифагора
АЕ=√(16-3)=√13
cos∠DAE=(√13):4
Тогда sin DOB=[2*(√3):4]*[(√13):4])= (√39):8=0,7806
и ∠ DOB=arcsin 0,7806
---------------------------
Или:
Треугольник АDB - прямоугольный ( ADB опирается на диаметр АВ).
DE в нем высота, квадрат которой равен произведению
DE²=АЕ*ВЕ
3=(√13)*ВЕ
ВЕ=3:√13
Тогда диаметр равен АЕ+ВЕ=√13+3:√13=16:√13, а
радиус ОВ=ОD=8:√13
Тогда синус DOB=DE:OD=(√3):(8:√13)= (√39):8=0,7806
и угол DOB=arcsin 0,7806
По таблице синусов можно найти его градусную величину: 51°20'
---------------
И "на закуску" то, с чего можно было начать и остановиться на этом.
Ясно, что найдя синус угла DAE, мы можем по таблице найти этот угол, а умножив на два его значение, найти искомый угол DOE.
Итак, синус ∠DAE=(√3):4=0,4330.
По таблице синусов это синус угла 25° 40'. ⇒
∠ DOВ=2*25° 40'=51°20'
------
[email protected]
Площадь параллелограмма S=a*h (где a – сторона h – высота)
Выразим из формулы высоту:
h=S/a
h=12/4=3
Рассмотрим треугольник образованный боковой стороной параллелограмма, диагональю и основанием. Данный треугольник прямоугольный с гипотенузой равной основанию параллелограмма.
По теореме Пифагора гипотенуза равна с= √(a^2+h^2) (где a и h – катеты)
с= √(4^2+3^2)= √(16+9)= √25= 5
ответ: основание данного параллелограмма равна 5