Чтобы выполнялось условие <BED=2<АСВ, построим на вершине С угол ВСF, равный двум углам С треугольника АВС. Проводя прямые параллельно прямой СF, мы видим, что если треугольник АВС равнобедренный с основанием АС, то условие задачи не может быть выполнено, поскольку прямая ЕD будет параллельна стороне ВС треугольника при любом положении точки Е на стороне ВС и точка D будет лежать на продолжении стороны АВ, а не на стороне, как дано в условии. Значит <A должен быть больше <C. Но в любом случае по теореме о неравенстве треугольника в треугольнике АЕС АС+ЕС>AE. Остается доказать, что AD ≤ AE. Рассмотрим остроугольный треугольник АВС. Продолжим прямую ЕD до пересечения с прямой СА в точке Р. Угол А треугольника острый, значит угол РАD - тупой, а угол АDЕ - еще тупее... (как внешний угол, равный сумме двух внутренних, не смежных с ним. В треугольнике АDЕ тупым может быть только один угол и он - больший. Против большего угла лежит большая сторона. Значит АЕ>AD и АС+ЕС>AD, что и требовалось доказать.
P.S. Можно отметить, что при <A=90° решение будет таким же, так как <ADE>90°, а если <A>90°, то возможен случай, когда AD>AE.
Периметры - это сумма сторон. AB+BC+AC=AВ+ВD+AD или ВС+АC=ВD+АD или 4+АО+7=10+ОD+AD. АО=ОD+AD-1. (1) AC+CD+AD=BC+CD+BD или AC+AD=BC+BD или AО+7+AD=4+10+ОD. АО=ОD-AD+7.(2) Приравняем (1) и (2): ОD+AD-1=ОD-AD+7. Отсюда 2AD=8 и AD=4.Тогда OD=АО-3. По теореме косинусов в треугольнике ВОС: Cosα = (b²+c²-a²)/2bc. (α - между b и c) или Cosα = (100+49-16)/140 =133/140=0,95. В треугольнике АОD угол <АОD=<BOC, как вертикальные Тогда по теореме косинусов в треугольнике AOD: 0,95 = (АО²+(АО-3)²-16)/(2*АО(АО-3)). Или 2АО²-6АО-7=1,9АО²-5,7АО или 0,1АО²-0,3АО-7=0 или АО²-3АО-70=0. Отсюда АО1=(3+17)/2=10, АО2=-7 - не удовлетворяет условию. ответ: АО=10.
Проводя прямые параллельно прямой СF, мы видим, что если треугольник АВС равнобедренный с основанием АС, то условие задачи не может быть выполнено, поскольку прямая ЕD будет параллельна стороне ВС треугольника при любом положении точки Е на стороне ВС и точка D будет лежать на продолжении стороны АВ, а не на стороне, как дано в условии.
Значит <A должен быть больше <C.
Но в любом случае по теореме о неравенстве треугольника в треугольнике АЕС АС+ЕС>AE. Остается доказать, что AD ≤ AE.
Рассмотрим остроугольный треугольник АВС.
Продолжим прямую ЕD до пересечения с прямой СА в точке Р.
Угол А треугольника острый, значит угол РАD - тупой, а угол АDЕ - еще тупее... (как внешний угол, равный сумме двух внутренних, не смежных с ним. В треугольнике АDЕ тупым может быть только один угол и он - больший. Против большего угла лежит большая сторона.
Значит АЕ>AD и АС+ЕС>AD, что и требовалось доказать.
P.S. Можно отметить, что при <A=90° решение будет таким же, так как
<ADE>90°, а если <A>90°, то возможен случай, когда AD>AE.
AB+BC+AC=AВ+ВD+AD или ВС+АC=ВD+АD или
4+АО+7=10+ОD+AD. АО=ОD+AD-1. (1)
AC+CD+AD=BC+CD+BD или AC+AD=BC+BD или
AО+7+AD=4+10+ОD. АО=ОD-AD+7.(2)
Приравняем (1) и (2): ОD+AD-1=ОD-AD+7.
Отсюда 2AD=8 и AD=4.Тогда OD=АО-3.
По теореме косинусов в треугольнике ВОС:
Cosα = (b²+c²-a²)/2bc. (α - между b и c) или
Cosα = (100+49-16)/140 =133/140=0,95.
В треугольнике АОD угол <АОD=<BOC, как вертикальные
Тогда по теореме косинусов в треугольнике AOD:
0,95 = (АО²+(АО-3)²-16)/(2*АО(АО-3)). Или
2АО²-6АО-7=1,9АО²-5,7АО или
0,1АО²-0,3АО-7=0 или
АО²-3АО-70=0. Отсюда АО1=(3+17)/2=10,
АО2=-7 - не удовлетворяет условию.
ответ: АО=10.