С чертежом
1. Найдите боковую поверхность цилиндр, высота которого равна 5, если известно, что при увеличении его высоты на 4, объем увеличивается на 36π.
2. В цилиндре с высотой 20 см , на расстоянии 8 см от оси перпендикулярно основанию проведено сечение, площадь которого 600 см2. Определите объем этого цилиндра.
3. Площадь основания цилиндра 225π см2,а площадь осевого сечения 300 см2.Найдите объем цилиндра.
В правильной треугольной пирамиде высота основания равна h, боковые рёбра наклонены к основанию под углом α. Найти объём пирамиды.
===========================================================
В основании правильной треугольной пирамиды лежит правильный треугольник. Вершина такой пирамиды проецируется в центр основания. Центр правильного треугольника является точка О - точка пересечения бисссектрис, медиан и высот. СН = h , ∠ACB = αВ ΔАВС: Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1, считая от вершины.СО:ОН = 2:1 ⇒ СО = 2•СН/3 = 2h/3В ΔСАН: sin60° = CH/AC ⇒ AC = CH/sin60° = CH/(√3/2) = 2h/√3В ΔСМО: tgα = MO/CO ⇒ MO = CO•tgα = 2h•tgα/3V пир. = (1/3)•Sabc•MO = (1/3) • (AC²•√3/4) • MO = (1/3) • (2h/√3)² • (√3/4) • (2h•tgα/3) = 2√3•h³•tgα/27ОТВЕТ: V = 2√3•h³•tgα/27В 7 треугольники АДЕ и ДЕС равны (по двум сторонам и углу между ними). Из равенства треугольников следует равенство углов. Угол ДАЕ равен углу ДСЕ. Угол БДС равен АДЕ (как накрест лежащие), также СДЕ равен БДА. Так как углы СДЕ и АДЕ равны по условию, то и БДС равен БДА. Треугольники БДА и БДС равны. Следовательно, угол БАД равен БСД. Угол БАЕ равен углу ВСД, следовательно, треугольник АБС равнобедренный.
В 8 треугольник АЕД-равнобедренный, значит, угол АЕД равен АДЕ. Углы АЕС и АДБ являются смежными с АЕД и АДЕ, а смежные углы в сумме дают 180 градусов. Так как АЕД и АДЕ равны, то и АЕС и АДБ равны. Из равенства треугольников следует равенство углов. Угол АБД равен АСЕ. Из этого следует, что треугольник АБС является равнобедренным.
Объяснение: