Соединяем точки О и А, затем проводим касательные, отмечаем точки В и С, соединяем их. Проводим линию от О до В. Продолжим сторону АВ до пересечерия с диаметром, проведенным перпендикулярно ОА. Отметим на пересечении точку М. Угол САВ равен 60, значит угол ОАМ 30 градусов, у нас прямоугольный треугольник с углом 30 градусов. Обозначим ОМ = х, значит АМ 2х, ОА по условию 6, по теореме пифагора находим ОМ и АМ. теперь у нас треугольник ОВМ, угол МОВ 30 градусов. Значит МВ - половина ОМ, также по теореме пифагора находим ОВ - радиус, получаем 3.
и их отношение равно (BP/PN)*(CP/PM) = 90/12 = 45/6;
так что если у треугольника MNP площадь 6, то у треугольника BPC площадь 45, а не 15.
Ну, и если уж очень хочется, в этом случае
АР/PK = AM/MB + AN/NC = 7/6; то есть у треугольника ВСР высота (расстояние от Р до ВС) равно 6/13 высоты АВС (то есть расстояния от А до ВС), соответственно, и площадь АВС равна 13/6 площади ВСР (все необходимые обоснования дайте самостоятельно - например, объясните, почему это я говорю про высоты, если АК - наклонная к ВС?).
Вы уж сами выбирайте, какое условие лишнее - площадь MNP или что-то другое.
Соединяем точки О и А, затем проводим касательные, отмечаем точки В и С, соединяем их. Проводим линию от О до В. Продолжим сторону АВ до пересечерия с диаметром, проведенным перпендикулярно ОА. Отметим на пересечении точку М. Угол САВ равен 60, значит угол ОАМ 30 градусов, у нас прямоугольный треугольник с углом 30 градусов. Обозначим ОМ = х, значит АМ 2х, ОА по условию 6, по теореме пифагора находим ОМ и АМ. теперь у нас треугольник ОВМ, угол МОВ 30 градусов. Значит МВ - половина ОМ, также по теореме пифагора находим ОВ - радиус, получаем 3.
Вас обманули:) такого не может быть, потому что такого не может быть никогда.
Пусть прямая АР пересекает ВС в точке К.
Тогда по теореме Чевы (если не знаете эту теорему, могу потом с ней)
(АМ/MB)*(BK/KC)*(CN/NA) = 1;
если подставить АМ/МВ = 1/2; CN/AN = 3/2; получается ВК/КС = 4/3;
По теореме Ван-Обеля (см. предыдущее примечание)
ВР/PN = BM/MA + BK/KC = 2 + 4/3 = 10/3;
CP/PM = CK/KB + CN/NA = 3/4 + 3/2 = 9/4;
Если обозначить синус угла ВРС как х, то
площадь треугольника ВРС равна ВР*СP*x/2;
площадь треугольника MNP равна PM*PN*x/2;
и их отношение равно (BP/PN)*(CP/PM) = 90/12 = 45/6;
так что если у треугольника MNP площадь 6, то у треугольника BPC площадь 45, а не 15.
Ну, и если уж очень хочется, в этом случае
АР/PK = AM/MB + AN/NC = 7/6; то есть у треугольника ВСР высота (расстояние от Р до ВС) равно 6/13 высоты АВС (то есть расстояния от А до ВС), соответственно, и площадь АВС равна 13/6 площади ВСР (все необходимые обоснования дайте самостоятельно - например, объясните, почему это я говорю про высоты, если АК - наклонная к ВС?).
Вы уж сами выбирайте, какое условие лишнее - площадь MNP или что-то другое.