а) Проекция точки S на плоскость основания это точка O — центр основания. Центр правильного треугольника является точкой пересечения его медиан, поэтому . Прямая проецируется на плоскость основания и прямую Поэтому проекция точки — точка — лежит на отрезке M — середина AS, поэтому ее проекция — это середина отрезка AO. Таким образом, проекции точек S и M на плоскость основания делят высоту AN треугольника ABC на три равные части.
б) Прямая проектируется на плоскость основания в прямую Поэтому проекция точки — точка — лежит на отрезке Значит, прямая является проекцией прямой следовательно, угол — искомый. Заметим, что где — центр основания, значит, — средняя линия треугольника а поэтому — середина
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
а) Проекция точки S на плоскость основания это точка O — центр основания. Центр правильного треугольника является точкой пересечения его медиан, поэтому . Прямая проецируется на плоскость основания и прямую Поэтому проекция точки — точка — лежит на отрезке M — середина AS, поэтому ее проекция — это середина отрезка AO. Таким образом, проекции точек S и M на плоскость основания делят высоту AN треугольника ABC на три равные части.
б) Прямая проектируется на плоскость основания в прямую Поэтому проекция точки — точка — лежит на отрезке Значит, прямая является проекцией прямой следовательно, угол — искомый. Заметим, что где — центр основания, значит, — средняя линия треугольника а поэтому — середина
Тогда
и
Из прямоугольного треугольника находим:
Из прямоугольного треугольника находим:
Значит, искомый угол равен
ответ:arctg 10/21
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.