У меня немного визуально кривоватый рисунок, но в целом он верен.
Для начала вспомним, как находить площадь параллелограмма. Вот формула для ее нахождения: S=ah (где h-высота; a-сторона, к которой проведена высота).У нас есть прямая AP, которая со стороной MT образует угол PAM, который равен 90°, а следовательно АР является высотой этого параллелограмма.Численно нам известна сторона МТ(МТ=7+10=17см), к которой проведена высота АР, но не известна сама высота. Рассмотрим треугольник АРТ, мы знаем, что угол А равен 90°, угол Р равен 45°, значит угол Т=180-90-45=45°; т.к. углы при основании равны, то треугольник является равнобедренным и его боковые стороны равны, а значит АТ=АР=10 см.Теперь по формуле узнаем площадь: S=17*10=170 см²
170 см²
Объяснение:
У меня немного визуально кривоватый рисунок, но в целом он верен.
Для начала вспомним, как находить площадь параллелограмма. Вот формула для ее нахождения: S=ah (где h-высота; a-сторона, к которой проведена высота).У нас есть прямая AP, которая со стороной MT образует угол PAM, который равен 90°, а следовательно АР является высотой этого параллелограмма.Численно нам известна сторона МТ(МТ=7+10=17см), к которой проведена высота АР, но не известна сама высота. Рассмотрим треугольник АРТ, мы знаем, что угол А равен 90°, угол Р равен 45°, значит угол Т=180-90-45=45°; т.к. углы при основании равны, то треугольник является равнобедренным и его боковые стороны равны, а значит АТ=АР=10 см.Теперь по формуле узнаем площадь: S=17*10=170 см²40
Объяснение:
Угол EKC = 180 - CKB = 180 - 115 = 65. Как угол смежный углу CKB
Угол KEB = 180 - ACE - EKC = 180 - 90 - 65 = 25. Рассматривался треугольник EKC
Треугольник CBK - равнобедренный, т.к. EC = CB
CBK = KEC = 25
KCB = 180 - CKB - KBC = 180 - 115 - 25 = 40 Рассматривался треугольник CBK
BCM = 90 - KCB = 90 - 40 = 50
CM = EC = CB (т.к. AС - биссектриса равнобедренного треугольника => высота и медиана)
Треугольник CBM равнобедренный
CBM = CMB = (180 - BCM) / 2 = (180 - 50) / 2 = 65
KBA = 180 - CBM - EBC = 180 - 65 - 25 = 90
KAB = 180 - AKB - KBA = 180 - 65 - 90 = 25
EAC = KAB = 25, т.к. AC биссектриса
BEA = 180 - EKA - EAK = 180 - 115 - 25 = 40