В призме АВСА₁В₁С₁ точки О₁ и О₂ - центры описанных около оснований окружностей. Для правильного треугольника радиус описанной окружности: Rо=a√3/3 ⇒ R=АО₂=А₁О₁=5/√3. Точка О - центр шара. Окружности, описанные около оснований призмы лежат на поверхности окружности. Плоскость РКМ проходит через середину высоты призмы и параллельна её основаниям. ΔРКМ=ΔАВС. Плоскости АВС и А₁В₁С₁ параллельны, и равноудалены от плоскости РКМ, значит плоскость РКМ пересекает поверхность шара по окружности, центр которой лежит на прямой О₁О₂. в точке О. В прямоугольном тр-ке AОО₂ АО=Rш=8, АО₂=Rо=5/√3. ОО₂²=АО²-АО₂²=64-25/3=167/3. h=О₁О₂=2·ОО₂=2√(167/3)≈14.9 - это ответ.
Sбок = 3 * 1/2 * b² * sin β (3 равных боковых грани - равнобедренные треугольники, их площадь: половина произведения сторон на синус угла между ними)
Пусть а - сторона основания. Из треугольника боковой грани по теореме косинусов:
a = √ (2b² - 2b²*cosβ) (все выражение под корнем)
Sосн = a²√3/4 = (2b² - 2b²*cosβ)√3/4
Sполн = Sбок + Sосн = 3/2 * b² * sin β + (2b² - 2b²*cosβ)√3/4 =
= (b²/2) * (3sinβ + √3 - √3cosβ)
2)
Центр описанной окружности лежит в точке пересечения серединных перпендикуляров к сторонам треугольника, т.е. d - это отрезок серединного перпендикуляра.
x = d * ctg(α/2) ⇒ 2x = 2d * ctg(α/2)
Sграни = 1/2 (2x)² * sin α = 2x²sinα = 2 d² * ctg²(α/2) * sinα(формула площади треугольника та же)
Sбок = 4 * Sграни = 8 d² * ctg²(α/2) * sinα
3)
∠ACB = α
BC = a/2 (половина стороны основания)
BH ⊥AC ⇒BH - расстояние от В до боковой грани, BH = d
a/2 = d/sin α (ΔBHC) ⇒ a = 2d / sin α
ΔABC: AC = a/2 /cos α = (d / sin α) / cosα = d / (sin α cos α)
Sбок = 1/2 Pосн * AC = 1/2 * 4 * a * AC = 2a * AC = 2 * 2d / sin α * d / (sin α cos α) =
= 4 d² / (sin²α * cosα)
Sосн = a² = 4d² / sin²α
Sп.п. = Sбок + Sосн = 4 d² / (sin²α * cosα) + 4d² / sin²α = 4d² / sin²α * (1 / cosα + 1)
Для правильного треугольника радиус описанной окружности: Rо=a√3/3 ⇒ R=АО₂=А₁О₁=5/√3.
Точка О - центр шара.
Окружности, описанные около оснований призмы лежат на поверхности окружности.
Плоскость РКМ проходит через середину высоты призмы и параллельна её основаниям. ΔРКМ=ΔАВС.
Плоскости АВС и А₁В₁С₁ параллельны, и равноудалены от плоскости РКМ, значит плоскость РКМ пересекает поверхность шара по окружности, центр которой лежит на прямой О₁О₂. в точке О.
В прямоугольном тр-ке AОО₂ АО=Rш=8, АО₂=Rо=5/√3.
ОО₂²=АО²-АО₂²=64-25/3=167/3.
h=О₁О₂=2·ОО₂=2√(167/3)≈14.9 - это ответ.