Рассмотрим прямоугольный треугольник АВС, где угол А прямой. Вписанная окружность касается катета АВ в точке М, где АМ=2, МВ=8. Точка касания окружности со стороной АС точка Р, центр окружности точка О. Линии проведенные к точкам касания из цетра вписанной окружности перпендикулярны сторонам и являютс радиусами. Тогда тогда АМОР является квадратом и стороны равны 2. АМ=АР как касательные к окружности, проведенные из одной точки. Рассмотрим треугольник ВМО. у него угол М прямой, МВ и МО являются катетами. Отношение МО к МВ равно тангенсу угла МВО (tg альфа).Значит тангенс МВО=2/8=1/4. Так как центр вписанной окружности лежит на пересечением биссектрис, то ВО является биссектрисой угла АВС и равен 2МВО. Найдем тагенс АВС по формуле двойного угла. он равен 2tg альфа деленное на
1-tg^2 альфа. Подставив значения получаем 8/15. A в треугольнике АВС катет АВ=2+8=10, tg АВС=8/15, найдем катет АС=АВ*tgАВС=10*8/15=80/15=16/3=5 1/3, а гипотенузу находим по теореме Пифагора.ВС^2=10^2+(16/3)^2=1156/9
ВС=34/3=11 1/3 Получаем АВ=10, АС=5 1/3, а ВС=11 1/3
Рассмотрим прямоугольный треугольник АВС, где угол А прямой. Вписанная окружность касается катета АВ в точке М, где АМ=2, МВ=8. Точка касания окружности со стороной АС точка Р, центр окружности точка О. Линии проведенные к точкам касания из цетра вписанной окружности перпендикулярны сторонам и являютс радиусами. Тогда тогда АМОР является квадратом и стороны равны 2. АМ=АР как касательные к окружности, проведенные из одной точки. Рассмотрим треугольник ВМО. у него угол М прямой, МВ и МО являются катетами. Отношение МО к МВ равно тангенсу угла МВО (tg альфа).Значит тангенс МВО=2/8=1/4. Так как центр вписанной окружности лежит на пересечением биссектрис, то ВО является биссектрисой угла АВС и равен 2МВО. Найдем тагенс АВС по формуле двойного угла. он равен 2tg альфа деленное на
1-tg^2 альфа. Подставив значения получаем 8/15. A в треугольнике АВС катет АВ=2+8=10, tg АВС=8/15, найдем катет АС=АВ*tgАВС=10*8/15=80/15=16/3=5 1/3, а гипотенузу находим по теореме Пифагора.ВС^2=10^2+(16/3)^2=1156/9
ВС=34/3=11 1/3 Получаем АВ=10, АС=5 1/3, а ВС=11 1/3
Плоскость треугольника АВС пересекает параллельные плоскости α и β по параллельным прямым.
ВС║В₁С₁║В₂С₂
По условию AB₁ = B₁B₂ = B₂B = 8/3 см, тогда по теореме Фалеса
AС₁ = С₁С₂ = С₂С = 8/3 см
ΔАВС подобен ΔАВ₁С₁ по двум углам (∠АВ₁С₁ = ∠АВС и ∠АС₁В₁ = ∠АСВ как накрест лежащие)
В₁С₁ : ВС = АВ₁ : АВ = 1 : 3
В₁С₁ = 8/3 см
ΔАВС подобен ΔАВ₂С₂ по двум углам (∠АВ₂С₂ = ∠АВС и ∠АС₂В₂ = ∠АСВ как накрест лежащие)
В₂С₂ : ВС = АВ₂ : АВ = 2 : 3
В₂С₂ = 2·8/3 = 16/3 см
а) треугольник АВС разбивается на
равносторонний треугольник АВ₁С₁;
трапецию В₂В₁С₁С₂;
трапецию ВВ₂С₂С.
б) Pab₁c₁ = (8/3) · 3 = 8 cм
Pb₂b₁c₁c₂ = 8/3 + 8/3 + 8/3 + 16/3 = 40/3 = 13 и 1/3 см
Pbb₂c₂c = 8/3 + 16/3 + 8/3 + 8 = 56/3 = 18 и 2/3 см
Объяснение: