построим высоту BH (она будет вне треуг.ABC, т.к. он тупоугольный), получим прямоугольный треугольник CBH, в кот. угол BCH = 180-ACB (как внешний к ACB) = 180-135 = 45 => треуг.BCH - равнобедренный
Определение: Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Пусть дан двугранный угол и точка Q внутри него.
Расстояния от точки Q до граней двугранного угла (перпендикуляры QR и QP) равны QR=2см и QH= 5см.
Угол RPH = 60° по определению.
Рассмотрим прямоугольные треугольники QRP и QHP с общей гипотенузой QP - искомым расстоянием от точки Q до ребра АВ. Пусть в треугольнике QRP угол RQP= x°, тогда в треугольнике QНP угол HQP = (60-x)°.
Тогда из треугольника QRP гипотенуза QP = 2/Sinx, а из треугольника QHP QP = 5/Sin(60-x).
найдем площадь треугольника ABC
построим высоту BH (она будет вне треуг.ABC, т.к. он тупоугольный), получим прямоугольный треугольник CBH, в кот. угол BCH = 180-ACB (как внешний к ACB) = 180-135 = 45 => треуг.BCH - равнобедренный
по т.Пифагора BH^2+CH^2 = BC^2 => 2BH^2 = 20*20 => BH^2 = 200
BH = 10корень(2)
S(ABC) = 1/2 * 12 * 10корень(2) = 60корень(2)
МедианА треугольника делит его на 2 равновеликих (т.е. площади равны) треугольника.
Построим третью медиану.
МедианЫ треугольника разбивают его на 6 равновеликих треугольников.
Очевидно, что ADKE состоит из двух треугольников, площади кот. равны и = 1/6 S(ABC)
S(ADKE) = 2*1/6*S(ABC) = 1/3*60корень(2) = 20корень(2)
Искомое расстояние равно 2√13 см.
Объяснение:
Определение: Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Пусть дан двугранный угол и точка Q внутри него.
Расстояния от точки Q до граней двугранного угла (перпендикуляры QR и QP) равны QR=2см и QH= 5см.
Угол RPH = 60° по определению.
Рассмотрим прямоугольные треугольники QRP и QHP с общей гипотенузой QP - искомым расстоянием от точки Q до ребра АВ. Пусть в треугольнике QRP угол RQP= x°, тогда в треугольнике QНP угол HQP = (60-x)°.
Тогда из треугольника QRP гипотенуза QP = 2/Sinx, а из треугольника QHP QP = 5/Sin(60-x).
2/Sinx = 5/Sin(60-x) => Sin(60-x)/Sinx = 5/2.
По формуле приведения
Sin(60-x) = sin60*cosx - cos60*sinx = (√3/2)*cosx - (1/2)*sinx.
Тогда ((√3/2)*cosx - (1/2)*sinx)/sinx = (√3/2)*ctgx - 1/2) = 5/2. =>
ctgx = 3*2/√3 = 2√3. Из треугольника QRP:
Ctgx = PR/QR (отношение прилежащего катета к противолежащему). => PR = QR*ctgx = 2*2√3 = 4√3.
По Пифагору QP = √(QR²+PR²) = √(4+48) = √52 = 2√13 см.
ответ: QP = 2√13 см.