1. а) ΔАВС - прямоугольный, т.к. в нем сумма двух углов В и С составляет 90°=22°+68°, значит, и ∠С=90°
г) угол 2 внешний угол треугольника при вершине С.
2. т.к. сумма двух острых углов, из которых одни больше другого на 60°, равна 90°, то если из суммы вычесть эти 60°, то получим два равных меньших угла В, а именно 2∠В=90°-60°=30°, тогда один меньший угол равен ∠В=30°/2=15°, ∠А=90°-15°=75°
ответ ∠В=15°; ∠А=75°
3.∠К=∠N=40°/ как углы при основании МК равнобедренного треугольника./ сумма углов данного треугольника 180°⇒∠N=180°-(∠М+∠К)=180°-(40°+40°)=100°
ответ ∠N=100°; ∠К=40°
4. меньший из углов, ∠А. пусть он равен х, тогда ∠В=2х, ∠С=х+20, сумма углов в треугольнике равна 180°, составим и решим уравнение.
1. а) Δ АВС прямоугольный, т.к. 22+68=90 °. г) 2 – внешний.
2. ∠ В=х, ∠ А=х+60; х+х+60=90; 2х=30; х=15; ∠ В=15°, ∠А=60+15=75°
3. ∠ К=40°; ∠N=180-40-40=100°
4. ∠А=х°, ∠В=2х°; ∠С=х+20°; х+2х+х+20=180; 4х=160; х=40
∠А=40° ∠В=40*2=80° ∠С=40+20=60°
1. а) ΔАВС - прямоугольный, т.к. в нем сумма двух углов В и С составляет 90°=22°+68°, значит, и ∠С=90°
г) угол 2 внешний угол треугольника при вершине С.
2. т.к. сумма двух острых углов, из которых одни больше другого на 60°, равна 90°, то если из суммы вычесть эти 60°, то получим два равных меньших угла В, а именно 2∠В=90°-60°=30°, тогда один меньший угол равен ∠В=30°/2=15°, ∠А=90°-15°=75°
ответ ∠В=15°; ∠А=75°
3.∠К=∠N=40°/ как углы при основании МК равнобедренного треугольника./ сумма углов данного треугольника 180°⇒∠N=180°-(∠М+∠К)=180°-(40°+40°)=100°
ответ ∠N=100°; ∠К=40°
4. меньший из углов, ∠А. пусть он равен х, тогда ∠В=2х, ∠С=х+20, сумма углов в треугольнике равна 180°, составим и решим уравнение.
х+2х+х+20=180, 4х=160, х=160/4; х=40, ∠А=40°; ∠В=2*40°=80°; ∠С=40°+20°=60°
ответ ∠А=40°; ∠В=80°; ∠С=60°