P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Дано: треугольник АВС, АВ=ВС, О-середина АС. а) Постройте фигуру, симметричную треугольнику АВС относительно точки О. б) Какую фигуру вместе образуют треугольник АВС и ему симметричный?
Решение 1а в приложении .
При центральной симметрии В→В’ , А→А ’=С , С→С ’=А
б)Треугольник АВС и ему симметричный образуют ромб , тк АВ=С’В’ , ВС=А’В’ .
№2
Постройте ромб АВСD. Постройте фигуру, симметричную ромбу относительно прямой, проходящей через точку С и параллельной ВD. В какую фигуру перейдет ромб АВСD при этой симметрии?
Решение 2 в приложении .
Прямая а║ВD, С∈а
При осевой симметрии ромб АВСD перейдет ромб А’В’СD’.
P(DKE) = DE + KE + DK
как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е
14 = 16 + 18 - 4DK
4DK = 16 + 18 - 14
DK = 5 см
Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см.
Теперь находим стороны прямоугольника.
DС = ЕF = 16 - 5 - 5 = 6 см
DE = CF = 18 - 5 - 5 = 8 см
Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Объяснение:
Дано: треугольник АВС, АВ=ВС, О-середина АС. а) Постройте фигуру, симметричную треугольнику АВС относительно точки О. б) Какую фигуру вместе образуют треугольник АВС и ему симметричный?
Решение 1а в приложении .
При центральной симметрии В→В’ , А→А ’=С , С→С ’=А
б)Треугольник АВС и ему симметричный образуют ромб , тк АВ=С’В’ , ВС=А’В’ .
№2
Постройте ромб АВСD. Постройте фигуру, симметричную ромбу относительно прямой, проходящей через точку С и параллельной ВD. В какую фигуру перейдет ромб АВСD при этой симметрии?
Решение 2 в приложении .
Прямая а║ВD, С∈а
При осевой симметрии ромб АВСD перейдет ромб А’В’СD’.
Точка С отобразится сама в себя.