Сумма углов Δ ACD 180°, угол АСD = 90°( по условию), угол D = 60°, тогда угол САD = 180° - 90° - 60° = 30°. ΔACD - прямоугольный треугольник. По свойству прямоугольного треугольника сторона CD, которая лежит против угла 30° равна половине гипотенузы AD. AD = 2CD. Диагональ делит угол А пополам, значит угол А = 60°, трапеция АВСD - равнобокая, боковые стороны равны AC = CD. рассмотрим Δ АВС , угол САВ = 30°, угол ВСА = 30° ( как угол при параллельных прямых и секущей), Δ АВС - равнобедренный, т.е. АВ = ВС. P = AB + BC + CD + AD = 5X, X = 20 :5 = 4 cм, средняя линия трапеции равна полусумме оснований ВС = 4 см, АD = 2·4 = 8 см (4 + 8)/2 = 6 см ответ 6 см
Начертим треугольник ABC.C=90°.По условию острый угол равен 45°-> второй угол будет тоже 45°.Следовательно AC=CB.. Рассмотрим треугольник ACH.угол А=45°,угол AHC=90(высота же),уголс ACH=45°. Из чего следует,что CH=AH=9,тоже самое проделываем с треугольником CHB.AH=HB=9=>AB=18. Найдём катеты,которые равны,т.е. АВ^2=AC^2+CB^2,пусть AC=x=CB,=> AB^2=2х^2.18^2=2х^2.324=2x^2,x=корень из 162,S(прямоугольное.треугольника)=1/2произведений катетов=>S=1/2AC*CB=(корень из 162*корень из 162)/2=162/2=81